Phase transitions in machine learning:
Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning as well as sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in det...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Links: | https://doi.org/10.1017/CBO9780511975509 |
Zusammenfassung: | Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning as well as sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in detail this phenomenon, and the extensive experimental investigation that supports its presence. They then turn their attention to the possible implications and explore appropriate methods for tackling them. Weaving together fundamental aspects of computer science, statistical physics and machine learning, the book provides sufficient mathematics and physics background to make the subject intelligible to researchers in AI and other computer science communities. Open research issues are also discussed, suggesting promising directions for future research. |
Umfang: | 1 Online-Ressource (xv, 383 Seiten) |
ISBN: | 9780511975509 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511975509 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 101011s2011||||enk o ||1 0|eng|d | ||
020 | |a 9780511975509 | ||
100 | 1 | |a Saitta, L. |d 1944- | |
245 | 1 | 0 | |a Phase transitions in machine learning |c Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 Online-Ressource (xv, 383 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning as well as sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in detail this phenomenon, and the extensive experimental investigation that supports its presence. They then turn their attention to the possible implications and explore appropriate methods for tackling them. Weaving together fundamental aspects of computer science, statistical physics and machine learning, the book provides sufficient mathematics and physics background to make the subject intelligible to researchers in AI and other computer science communities. Open research issues are also discussed, suggesting promising directions for future research. | ||
700 | 1 | |a Cornuejols, Antoine | |
700 | 1 | |a Giordana, Attilio | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521763912 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511975509 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511975509 |
---|---|
_version_ | 1825574051603546112 |
adam_text | |
any_adam_object | |
author | Saitta, L. 1944- |
author2 | Cornuejols, Antoine Giordana, Attilio |
author2_role | |
author2_variant | a c ac a g ag |
author_facet | Saitta, L. 1944- Cornuejols, Antoine Giordana, Attilio |
author_role | |
author_sort | Saitta, L. 1944- |
author_variant | l s ls |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01648nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511975509</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">101011s2011||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511975509</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saitta, L.</subfield><subfield code="d">1944-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase transitions in machine learning</subfield><subfield code="c">Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 383 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning as well as sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in detail this phenomenon, and the extensive experimental investigation that supports its presence. They then turn their attention to the possible implications and explore appropriate methods for tackling them. Weaving together fundamental aspects of computer science, statistical physics and machine learning, the book provides sufficient mathematics and physics background to make the subject intelligible to researchers in AI and other computer science communities. Open research issues are also discussed, suggesting promising directions for future research.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cornuejols, Antoine</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giordana, Attilio</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521763912</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511975509</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511975509 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:05Z |
institution | BVB |
isbn | 9780511975509 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 383 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Saitta, L. 1944- Phase transitions in machine learning Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols Cambridge Cambridge University Press 2011 1 Online-Ressource (xv, 383 Seiten) txt c cr Phase transitions typically occur in combinatorial computational problems and have important consequences, especially with the current spread of statistical relational learning as well as sequence learning methodologies. In Phase Transitions in Machine Learning the authors begin by describing in detail this phenomenon, and the extensive experimental investigation that supports its presence. They then turn their attention to the possible implications and explore appropriate methods for tackling them. Weaving together fundamental aspects of computer science, statistical physics and machine learning, the book provides sufficient mathematics and physics background to make the subject intelligible to researchers in AI and other computer science communities. Open research issues are also discussed, suggesting promising directions for future research. Cornuejols, Antoine Giordana, Attilio Erscheint auch als Druck-Ausgabe 9780521763912 |
spellingShingle | Saitta, L. 1944- Phase transitions in machine learning |
title | Phase transitions in machine learning |
title_auth | Phase transitions in machine learning |
title_exact_search | Phase transitions in machine learning |
title_full | Phase transitions in machine learning Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols |
title_fullStr | Phase transitions in machine learning Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols |
title_full_unstemmed | Phase transitions in machine learning Lorenza Saitta, Attilio Giordana, Antoine Cornuéjols |
title_short | Phase transitions in machine learning |
title_sort | phase transitions in machine learning |
work_keys_str_mv | AT saittal phasetransitionsinmachinelearning AT cornuejolsantoine phasetransitionsinmachinelearning AT giordanaattilio phasetransitionsinmachinelearning |