Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information
Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Amsterdam
Elsevier
[2025]
|
Links: | https://www.sciencedirect.com/science/book/9780443265105 https://doi.org/10.1016/C2023-0-51304-7 |
Zusammenfassung: | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized—and sparse datasets of input variables enhanced and/or rescaled—to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more. Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic. |
Umfang: | 1 Online-Ressource |
ISBN: | 9780443265112 |
DOI: | 10.1016/C2023-0-51304-7 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV050185442 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250227s2025 xx o|||| 00||| eng d | ||
020 | |a 9780443265112 |c Online |9 978-0-443-26511-2 | ||
024 | 7 | |a 10.1016/C2023-0-51304-7 |2 doi | |
035 | |a (DE-599)BVBBV050185442 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Wood, David A. |e Verfasser |0 (DE-588)1251889549 |4 aut | |
245 | 1 | 0 | |a Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems |b Prediction Models Exploiting Well-Log Information |c David A. Wood (DWA Energy Limited, Lincoln, United Kingdom) |
264 | 1 | |a Amsterdam |b Elsevier |c [2025] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized—and sparse datasets of input variables enhanced and/or rescaled—to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more. Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-443-26510-5 |
856 | 4 | 0 | |u https://doi.org/10.1016/C2023-0-51304-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-EPS | ||
940 | 1 | |q ZDB-33-EPS25 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035521087 | |
966 | e | |u https://www.sciencedirect.com/science/book/9780443265105 |l DE-703 |p ZDB-33-EPS |q ZDB-33-EPS25 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1825200587001561088 |
---|---|
adam_text | |
any_adam_object | |
author | Wood, David A. |
author_GND | (DE-588)1251889549 |
author_facet | Wood, David A. |
author_role | aut |
author_sort | Wood, David A. |
author_variant | d a w da daw |
building | Verbundindex |
bvnumber | BV050185442 |
collection | ZDB-33-EPS |
ctrlnum | (DE-599)BVBBV050185442 |
doi_str_mv | 10.1016/C2023-0-51304-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV050185442</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250227s2025 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780443265112</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-443-26511-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2023-0-51304-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050185442</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wood, David A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1251889549</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems</subfield><subfield code="b">Prediction Models Exploiting Well-Log Information</subfield><subfield code="c">David A. Wood (DWA Energy Limited, Lincoln, United Kingdom)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2025]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized—and sparse datasets of input variables enhanced and/or rescaled—to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more. Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-443-26510-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/C2023-0-51304-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EPS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-33-EPS25</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035521087</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.sciencedirect.com/science/book/9780443265105</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-33-EPS</subfield><subfield code="q">ZDB-33-EPS25</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050185442 |
illustrated | Not Illustrated |
indexdate | 2025-02-27T09:02:01Z |
institution | BVB |
isbn | 9780443265112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035521087 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource |
psigel | ZDB-33-EPS ZDB-33-EPS25 ZDB-33-EPS ZDB-33-EPS25 |
publishDate | 2025 |
publishDateSearch | 2025 |
publishDateSort | 2025 |
publisher | Elsevier |
record_format | marc |
spelling | Wood, David A. Verfasser (DE-588)1251889549 aut Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information David A. Wood (DWA Energy Limited, Lincoln, United Kingdom) Amsterdam Elsevier [2025] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems: Prediction Models Exploiting Well-Log Information explores machine and deep learning models for subsurface geological prediction problems commonly encountered in applied resource evaluation and reservoir characterization tasks. The book provides insights into how the performance of ML/DL models can be optimized—and sparse datasets of input variables enhanced and/or rescaled—to improve prediction performances. A variety of topics are covered, including regression models to estimate total organic carbon from well-log data, predicting brittleness indexes in tight formation sequences, trapping mechanisms in potential sub-surface carbon storage reservoirs, and more. Each chapter includes its own introduction, summary, and nomenclature sections, along with one or more case studies focused on prediction model implementation related to its topic. Erscheint auch als Druck-Ausgabe 978-0-443-26510-5 https://doi.org/10.1016/C2023-0-51304-7 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wood, David A. Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information |
title | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information |
title_auth | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information |
title_exact_search | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information |
title_full | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information David A. Wood (DWA Energy Limited, Lincoln, United Kingdom) |
title_fullStr | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information David A. Wood (DWA Energy Limited, Lincoln, United Kingdom) |
title_full_unstemmed | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems Prediction Models Exploiting Well-Log Information David A. Wood (DWA Energy Limited, Lincoln, United Kingdom) |
title_short | Implementation and Interpretation of Machine and Deep Learning to Applied Subsurface Geological Problems |
title_sort | implementation and interpretation of machine and deep learning to applied subsurface geological problems prediction models exploiting well log information |
title_sub | Prediction Models Exploiting Well-Log Information |
url | https://doi.org/10.1016/C2023-0-51304-7 |
work_keys_str_mv | AT wooddavida implementationandinterpretationofmachineanddeeplearningtoappliedsubsurfacegeologicalproblemspredictionmodelsexploitingwellloginformation |