Hands-On AI Trading with Python, QuantConnect, and AWS.:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2025
|
Ausgabe: | 1st ed |
Links: | https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31889396 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (410 Seiten) |
ISBN: | 9781394267668 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV050174665 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 250219s2025 xx o|||| 00||| eng d | ||
020 | |a 9781394267668 |9 978-1-394-26766-8 | ||
035 | |a (ZDB-30-PQE)EBC31889396 | ||
035 | |a (ZDB-30-PAD)EBC31889396 | ||
035 | |a (ZDB-89-EBL)EBL31889396 | ||
035 | |a (DE-599)BVBBV050174665 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Pik, Jiri |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hands-On AI Trading with Python, QuantConnect, and AWS. |
250 | |a 1st ed | ||
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2025 | |
264 | 4 | |c ©2025 | |
300 | |a 1 Online-Ressource (410 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Biographies -- Preface: QuantConnect -- Introduction -- Part I: Foundations of Capital Markets and Quantitative Trading -- Chapter 1: Foundations of Capital Markets -- Market Mechanics -- Market Participants -- Trading Is the "Play -- The Stage and Basic Rules of Trading-The Limit Order Book -- Actors-Liquidity Trader, Market Maker, and Informed Trader -- Liquidity Trader -- Market Maker -- Informed Trader -- AI Actors Wanted -- Data and Data Feeds -- Custom and Alternative Data -- Brokerages and Transaction Costs -- Transaction Costs -- Security Identifiers -- Assets and Derivatives -- US Equities -- US Equity Options -- Index Options -- US Futures -- Cryptocurrency -- Chapter 2: Foundations of Quantitative Trading -- Research Process -- Research -- Backtesting -- Parameter Optimization -- Paper and Live Trading -- Testing and Debugging Tools -- Debuggers -- Logging -- Charting -- Object Store -- Coding Process -- Time and Look-ahead Bias -- Look-ahead Bias -- Market Hours and Scheduling -- Strategy Styles -- Trading Signals -- Allocating Capital -- Regimes and Portfolios of Strategies -- Parameter Sensitivity Testing and Optimization -- 1. Remove -- 2. Replace -- 3. Reduce -- Parameter Sensitivity Testing -- Margin Modeling -- Equities -- Equity Options -- Futures -- Diversification and Asset Selection -- Fundamental Asset Selection -- ETF Constituents Asset Selection -- Dollar-Volume Asset Selection -- Universe Settings -- Indicators and Other Data Transformations -- Automatic Indicators -- Manual Indicators -- Indicator Warm Up -- Storing Objects -- Indicator Events -- Sourcing Ideas -- Hypothesis-driven Testing -- Data Driven Investing -- Quantpedia -- QuantConnect Research and Strategy Explorer -- Part II: Foundations of AI and ML in Algorithmic Trading | |
505 | 8 | |a Step-by-step Guide for AI-based Algorithmic Trading -- Chapter 3: Step 1: Problem Definition -- Chapter 4: Step 2: Dataset Preparation -- Data Collection -- Exploratory Data Analysis -- Data Preprocessing -- Handling Missing Data -- Handling Outliers -- Feature Engineering -- Normalization and Standardization of Features -- Transforming Time Series Features to Stationary -- Identification of Cointegrated Time Series with Engle-Granger Test -- Feature Selection -- Correlation Analysis -- Feature Importance Analysis -- Auto-identification of Features -- Dimensionality Reduction/Principal Component Analysis -- Splitting of Dataset into Training, Testing, and Possibly Validation Sets -- How to Split Your Data -- Chapter 5: Step 3: Model Choice, Training, and Application -- Regression -- Linear Regression -- Polynomial Regression -- LASSO Regression -- Ridge Regression -- Markov Switching Dynamic Regression -- Decision Tree Regression -- Support Vector Machines Regression with Wavelet Forecasting -- Classification -- Multiclass Random Forest Model -- Logistic Regression -- Hidden Markov Models -- Gaussian Naive Bayes -- Convolutional Neural Networks -- Ranking -- LGBRanker Ranking -- Clustering -- OPTICS Clustering -- Language Models -- OpenAI Language Model -- Amazon Chronos Model -- FinBERT Model -- Part III: Advanced Applications of AI in Trading and Risk Management -- Getting Started with Source Code -- Chapter 6: Applied Machine Learning -- Example 1-ML Trend Scanning with MLFinlab -- Example 2-Factor Preprocessing Techniques for Regime Detection -- Example 3-Reversion vs. Trending: Strategy Selection by Classification -- Example 4-Alpha by Hidden Markov Models -- Example 5-FX SVM Wavelet Forecasting -- Example 6-Dividend Harvesting Selection of High-Yield Assets -- Example 7-Effect of Positive-Negative Splits | |
505 | 8 | |a Example 8-Stop Loss Based on Historical Volatility and Drawdown Recovery -- Example 9-ML Trading Pairs Selection -- Example 10-Stock Selection through Clustering Fundamental Data -- Example 11-Inverse Volatility Rank and Allocate to Future Contracts -- Example 12-Trading Costs Optimization -- Example 13-PCA Statistical Arbitrage Mean Reversion -- Example 14-Temporal CNN Prediction -- Example 15-Gaussian Classifier for Direction Prediction -- Example 16-LLM Summarization of Tiingo News Articles -- Example 17-Head Shoulders Pattern Matching with CNN -- Example 18-Amazon Chronos Model -- Example 19-FinBERT Model -- Chapter 7: Better Hedging with Reinforcement Learning -- Introduction -- A New AI Trading Assistant -- Continuous Hedging Is Not Required -- Machine Learning Comes to the Rescue -- A Simplified but Effective Reinforcement Learning Approach -- Overview of the Reinforcement Learning -- Identification -- Simulation -- Ref inement Training on Actual Market Data -- Testing and Implementation -- Implementation on QuantConnect -- Primary Research Notebook -- The Policy Network -- Model Functions -- Fine-tuning with Market Data -- Results -- Conclusion -- Chapter 8: AI for Risk Management and Optimization -- What Is Corrective AI and Conditional Parameter Optimization? -- Feature Engineering -- Applying Corrective AI to Daily Seasonal Forex Trading -- What Is Conditional Parameter Optimization? -- Applying Conditional Parameter Optimization to an ETF Strategy -- Unconditional vs. Conditional Parameter Optimizations -- Performance Comparisons -- Conditional Portfolio Optimization -- Regime Changes Obliterate Traditional Portfolio Optimization Methods -- Learning to Optimize -- Ranking Is Easier Than Predicting -- The Fama-French Lineage -- Comparison with Conventional Optimization Methods -- Model Tactical Asset Allocation Portfolio | |
505 | 8 | |a CPO Software-as-a-Service -- Conclusion -- Definitions of Spread_EMA & -- Spread_VAR -- Chapter 9: Application of Large Language Models and Generative AI in Trading -- Role of Generative AI in Creating Alpha -- Selecting an LLM for Building a Generative AI Application -- Prompt Engineering -- Prompt Engineering in Practice -- Addressing Model "Hallucination -- Question Answering Using a Retrieval Augmented Application in SageMaker Canvas -- RAG Application Costs and Optimization Techniques -- Testing Our Infrastructure -- Summarization -- Useful AI Platforms and Services -- ChatGPT -- Gemini -- Bedrock -- SageMaker -- Q Business -- References -- Subject Index -- Code Index -- EULA. | |
700 | 1 | |a Chan, Ernest P. |e Sonstige |4 oth | |
700 | 1 | |a Broad, Jared |e Sonstige |4 oth | |
700 | 1 | |a Sun, Philip |e Sonstige |4 oth | |
700 | 1 | |a Singh, Vivek |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Pik, Jiri |t Hands-On AI Trading with Python, QuantConnect, and AWS |d Newark : John Wiley & Sons, Incorporated,c2025 |z 9781394268436 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035510545 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31889396 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1824475785244704768 |
---|---|
adam_text | |
any_adam_object | |
author | Pik, Jiri |
author_facet | Pik, Jiri |
author_role | aut |
author_sort | Pik, Jiri |
author_variant | j p jp |
building | Verbundindex |
bvnumber | BV050174665 |
contents | Cover -- Title Page -- Copyright -- Contents -- Biographies -- Preface: QuantConnect -- Introduction -- Part I: Foundations of Capital Markets and Quantitative Trading -- Chapter 1: Foundations of Capital Markets -- Market Mechanics -- Market Participants -- Trading Is the "Play -- The Stage and Basic Rules of Trading-The Limit Order Book -- Actors-Liquidity Trader, Market Maker, and Informed Trader -- Liquidity Trader -- Market Maker -- Informed Trader -- AI Actors Wanted -- Data and Data Feeds -- Custom and Alternative Data -- Brokerages and Transaction Costs -- Transaction Costs -- Security Identifiers -- Assets and Derivatives -- US Equities -- US Equity Options -- Index Options -- US Futures -- Cryptocurrency -- Chapter 2: Foundations of Quantitative Trading -- Research Process -- Research -- Backtesting -- Parameter Optimization -- Paper and Live Trading -- Testing and Debugging Tools -- Debuggers -- Logging -- Charting -- Object Store -- Coding Process -- Time and Look-ahead Bias -- Look-ahead Bias -- Market Hours and Scheduling -- Strategy Styles -- Trading Signals -- Allocating Capital -- Regimes and Portfolios of Strategies -- Parameter Sensitivity Testing and Optimization -- 1. Remove -- 2. Replace -- 3. Reduce -- Parameter Sensitivity Testing -- Margin Modeling -- Equities -- Equity Options -- Futures -- Diversification and Asset Selection -- Fundamental Asset Selection -- ETF Constituents Asset Selection -- Dollar-Volume Asset Selection -- Universe Settings -- Indicators and Other Data Transformations -- Automatic Indicators -- Manual Indicators -- Indicator Warm Up -- Storing Objects -- Indicator Events -- Sourcing Ideas -- Hypothesis-driven Testing -- Data Driven Investing -- Quantpedia -- QuantConnect Research and Strategy Explorer -- Part II: Foundations of AI and ML in Algorithmic Trading Step-by-step Guide for AI-based Algorithmic Trading -- Chapter 3: Step 1: Problem Definition -- Chapter 4: Step 2: Dataset Preparation -- Data Collection -- Exploratory Data Analysis -- Data Preprocessing -- Handling Missing Data -- Handling Outliers -- Feature Engineering -- Normalization and Standardization of Features -- Transforming Time Series Features to Stationary -- Identification of Cointegrated Time Series with Engle-Granger Test -- Feature Selection -- Correlation Analysis -- Feature Importance Analysis -- Auto-identification of Features -- Dimensionality Reduction/Principal Component Analysis -- Splitting of Dataset into Training, Testing, and Possibly Validation Sets -- How to Split Your Data -- Chapter 5: Step 3: Model Choice, Training, and Application -- Regression -- Linear Regression -- Polynomial Regression -- LASSO Regression -- Ridge Regression -- Markov Switching Dynamic Regression -- Decision Tree Regression -- Support Vector Machines Regression with Wavelet Forecasting -- Classification -- Multiclass Random Forest Model -- Logistic Regression -- Hidden Markov Models -- Gaussian Naive Bayes -- Convolutional Neural Networks -- Ranking -- LGBRanker Ranking -- Clustering -- OPTICS Clustering -- Language Models -- OpenAI Language Model -- Amazon Chronos Model -- FinBERT Model -- Part III: Advanced Applications of AI in Trading and Risk Management -- Getting Started with Source Code -- Chapter 6: Applied Machine Learning -- Example 1-ML Trend Scanning with MLFinlab -- Example 2-Factor Preprocessing Techniques for Regime Detection -- Example 3-Reversion vs. Trending: Strategy Selection by Classification -- Example 4-Alpha by Hidden Markov Models -- Example 5-FX SVM Wavelet Forecasting -- Example 6-Dividend Harvesting Selection of High-Yield Assets -- Example 7-Effect of Positive-Negative Splits Example 8-Stop Loss Based on Historical Volatility and Drawdown Recovery -- Example 9-ML Trading Pairs Selection -- Example 10-Stock Selection through Clustering Fundamental Data -- Example 11-Inverse Volatility Rank and Allocate to Future Contracts -- Example 12-Trading Costs Optimization -- Example 13-PCA Statistical Arbitrage Mean Reversion -- Example 14-Temporal CNN Prediction -- Example 15-Gaussian Classifier for Direction Prediction -- Example 16-LLM Summarization of Tiingo News Articles -- Example 17-Head Shoulders Pattern Matching with CNN -- Example 18-Amazon Chronos Model -- Example 19-FinBERT Model -- Chapter 7: Better Hedging with Reinforcement Learning -- Introduction -- A New AI Trading Assistant -- Continuous Hedging Is Not Required -- Machine Learning Comes to the Rescue -- A Simplified but Effective Reinforcement Learning Approach -- Overview of the Reinforcement Learning -- Identification -- Simulation -- Ref inement Training on Actual Market Data -- Testing and Implementation -- Implementation on QuantConnect -- Primary Research Notebook -- The Policy Network -- Model Functions -- Fine-tuning with Market Data -- Results -- Conclusion -- Chapter 8: AI for Risk Management and Optimization -- What Is Corrective AI and Conditional Parameter Optimization? -- Feature Engineering -- Applying Corrective AI to Daily Seasonal Forex Trading -- What Is Conditional Parameter Optimization? -- Applying Conditional Parameter Optimization to an ETF Strategy -- Unconditional vs. Conditional Parameter Optimizations -- Performance Comparisons -- Conditional Portfolio Optimization -- Regime Changes Obliterate Traditional Portfolio Optimization Methods -- Learning to Optimize -- Ranking Is Easier Than Predicting -- The Fama-French Lineage -- Comparison with Conventional Optimization Methods -- Model Tactical Asset Allocation Portfolio CPO Software-as-a-Service -- Conclusion -- Definitions of Spread_EMA & -- Spread_VAR -- Chapter 9: Application of Large Language Models and Generative AI in Trading -- Role of Generative AI in Creating Alpha -- Selecting an LLM for Building a Generative AI Application -- Prompt Engineering -- Prompt Engineering in Practice -- Addressing Model "Hallucination -- Question Answering Using a Retrieval Augmented Application in SageMaker Canvas -- RAG Application Costs and Optimization Techniques -- Testing Our Infrastructure -- Summarization -- Useful AI Platforms and Services -- ChatGPT -- Gemini -- Bedrock -- SageMaker -- Q Business -- References -- Subject Index -- Code Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC31889396 (ZDB-30-PAD)EBC31889396 (ZDB-89-EBL)EBL31889396 (DE-599)BVBBV050174665 |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV050174665</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">250219s2025 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394267668</subfield><subfield code="9">978-1-394-26766-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31889396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31889396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31889396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050174665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pik, Jiri</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hands-On AI Trading with Python, QuantConnect, and AWS.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2025</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2025</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (410 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Biographies -- Preface: QuantConnect -- Introduction -- Part I: Foundations of Capital Markets and Quantitative Trading -- Chapter 1: Foundations of Capital Markets -- Market Mechanics -- Market Participants -- Trading Is the "Play -- The Stage and Basic Rules of Trading-The Limit Order Book -- Actors-Liquidity Trader, Market Maker, and Informed Trader -- Liquidity Trader -- Market Maker -- Informed Trader -- AI Actors Wanted -- Data and Data Feeds -- Custom and Alternative Data -- Brokerages and Transaction Costs -- Transaction Costs -- Security Identifiers -- Assets and Derivatives -- US Equities -- US Equity Options -- Index Options -- US Futures -- Cryptocurrency -- Chapter 2: Foundations of Quantitative Trading -- Research Process -- Research -- Backtesting -- Parameter Optimization -- Paper and Live Trading -- Testing and Debugging Tools -- Debuggers -- Logging -- Charting -- Object Store -- Coding Process -- Time and Look-ahead Bias -- Look-ahead Bias -- Market Hours and Scheduling -- Strategy Styles -- Trading Signals -- Allocating Capital -- Regimes and Portfolios of Strategies -- Parameter Sensitivity Testing and Optimization -- 1. Remove -- 2. Replace -- 3. Reduce -- Parameter Sensitivity Testing -- Margin Modeling -- Equities -- Equity Options -- Futures -- Diversification and Asset Selection -- Fundamental Asset Selection -- ETF Constituents Asset Selection -- Dollar-Volume Asset Selection -- Universe Settings -- Indicators and Other Data Transformations -- Automatic Indicators -- Manual Indicators -- Indicator Warm Up -- Storing Objects -- Indicator Events -- Sourcing Ideas -- Hypothesis-driven Testing -- Data Driven Investing -- Quantpedia -- QuantConnect Research and Strategy Explorer -- Part II: Foundations of AI and ML in Algorithmic Trading</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Step-by-step Guide for AI-based Algorithmic Trading -- Chapter 3: Step 1: Problem Definition -- Chapter 4: Step 2: Dataset Preparation -- Data Collection -- Exploratory Data Analysis -- Data Preprocessing -- Handling Missing Data -- Handling Outliers -- Feature Engineering -- Normalization and Standardization of Features -- Transforming Time Series Features to Stationary -- Identification of Cointegrated Time Series with Engle-Granger Test -- Feature Selection -- Correlation Analysis -- Feature Importance Analysis -- Auto-identification of Features -- Dimensionality Reduction/Principal Component Analysis -- Splitting of Dataset into Training, Testing, and Possibly Validation Sets -- How to Split Your Data -- Chapter 5: Step 3: Model Choice, Training, and Application -- Regression -- Linear Regression -- Polynomial Regression -- LASSO Regression -- Ridge Regression -- Markov Switching Dynamic Regression -- Decision Tree Regression -- Support Vector Machines Regression with Wavelet Forecasting -- Classification -- Multiclass Random Forest Model -- Logistic Regression -- Hidden Markov Models -- Gaussian Naive Bayes -- Convolutional Neural Networks -- Ranking -- LGBRanker Ranking -- Clustering -- OPTICS Clustering -- Language Models -- OpenAI Language Model -- Amazon Chronos Model -- FinBERT Model -- Part III: Advanced Applications of AI in Trading and Risk Management -- Getting Started with Source Code -- Chapter 6: Applied Machine Learning -- Example 1-ML Trend Scanning with MLFinlab -- Example 2-Factor Preprocessing Techniques for Regime Detection -- Example 3-Reversion vs. Trending: Strategy Selection by Classification -- Example 4-Alpha by Hidden Markov Models -- Example 5-FX SVM Wavelet Forecasting -- Example 6-Dividend Harvesting Selection of High-Yield Assets -- Example 7-Effect of Positive-Negative Splits</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Example 8-Stop Loss Based on Historical Volatility and Drawdown Recovery -- Example 9-ML Trading Pairs Selection -- Example 10-Stock Selection through Clustering Fundamental Data -- Example 11-Inverse Volatility Rank and Allocate to Future Contracts -- Example 12-Trading Costs Optimization -- Example 13-PCA Statistical Arbitrage Mean Reversion -- Example 14-Temporal CNN Prediction -- Example 15-Gaussian Classifier for Direction Prediction -- Example 16-LLM Summarization of Tiingo News Articles -- Example 17-Head Shoulders Pattern Matching with CNN -- Example 18-Amazon Chronos Model -- Example 19-FinBERT Model -- Chapter 7: Better Hedging with Reinforcement Learning -- Introduction -- A New AI Trading Assistant -- Continuous Hedging Is Not Required -- Machine Learning Comes to the Rescue -- A Simplified but Effective Reinforcement Learning Approach -- Overview of the Reinforcement Learning -- Identification -- Simulation -- Ref inement Training on Actual Market Data -- Testing and Implementation -- Implementation on QuantConnect -- Primary Research Notebook -- The Policy Network -- Model Functions -- Fine-tuning with Market Data -- Results -- Conclusion -- Chapter 8: AI for Risk Management and Optimization -- What Is Corrective AI and Conditional Parameter Optimization? -- Feature Engineering -- Applying Corrective AI to Daily Seasonal Forex Trading -- What Is Conditional Parameter Optimization? -- Applying Conditional Parameter Optimization to an ETF Strategy -- Unconditional vs. Conditional Parameter Optimizations -- Performance Comparisons -- Conditional Portfolio Optimization -- Regime Changes Obliterate Traditional Portfolio Optimization Methods -- Learning to Optimize -- Ranking Is Easier Than Predicting -- The Fama-French Lineage -- Comparison with Conventional Optimization Methods -- Model Tactical Asset Allocation Portfolio</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CPO Software-as-a-Service -- Conclusion -- Definitions of Spread_EMA &amp -- Spread_VAR -- Chapter 9: Application of Large Language Models and Generative AI in Trading -- Role of Generative AI in Creating Alpha -- Selecting an LLM for Building a Generative AI Application -- Prompt Engineering -- Prompt Engineering in Practice -- Addressing Model "Hallucination -- Question Answering Using a Retrieval Augmented Application in SageMaker Canvas -- RAG Application Costs and Optimization Techniques -- Testing Our Infrastructure -- Summarization -- Useful AI Platforms and Services -- ChatGPT -- Gemini -- Bedrock -- SageMaker -- Q Business -- References -- Subject Index -- Code Index -- EULA.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Ernest P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Broad, Jared</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Philip</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Vivek</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Pik, Jiri</subfield><subfield code="t">Hands-On AI Trading with Python, QuantConnect, and AWS</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2025</subfield><subfield code="z">9781394268436</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035510545</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31889396</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV050174665 |
illustrated | Not Illustrated |
indexdate | 2025-02-19T09:01:37Z |
institution | BVB |
isbn | 9781394267668 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035510545 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (410 Seiten) |
psigel | ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2025 |
publishDateSearch | 2025 |
publishDateSort | 2025 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Pik, Jiri Verfasser aut Hands-On AI Trading with Python, QuantConnect, and AWS. 1st ed Newark John Wiley & Sons, Incorporated 2025 ©2025 1 Online-Ressource (410 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Biographies -- Preface: QuantConnect -- Introduction -- Part I: Foundations of Capital Markets and Quantitative Trading -- Chapter 1: Foundations of Capital Markets -- Market Mechanics -- Market Participants -- Trading Is the "Play -- The Stage and Basic Rules of Trading-The Limit Order Book -- Actors-Liquidity Trader, Market Maker, and Informed Trader -- Liquidity Trader -- Market Maker -- Informed Trader -- AI Actors Wanted -- Data and Data Feeds -- Custom and Alternative Data -- Brokerages and Transaction Costs -- Transaction Costs -- Security Identifiers -- Assets and Derivatives -- US Equities -- US Equity Options -- Index Options -- US Futures -- Cryptocurrency -- Chapter 2: Foundations of Quantitative Trading -- Research Process -- Research -- Backtesting -- Parameter Optimization -- Paper and Live Trading -- Testing and Debugging Tools -- Debuggers -- Logging -- Charting -- Object Store -- Coding Process -- Time and Look-ahead Bias -- Look-ahead Bias -- Market Hours and Scheduling -- Strategy Styles -- Trading Signals -- Allocating Capital -- Regimes and Portfolios of Strategies -- Parameter Sensitivity Testing and Optimization -- 1. Remove -- 2. Replace -- 3. Reduce -- Parameter Sensitivity Testing -- Margin Modeling -- Equities -- Equity Options -- Futures -- Diversification and Asset Selection -- Fundamental Asset Selection -- ETF Constituents Asset Selection -- Dollar-Volume Asset Selection -- Universe Settings -- Indicators and Other Data Transformations -- Automatic Indicators -- Manual Indicators -- Indicator Warm Up -- Storing Objects -- Indicator Events -- Sourcing Ideas -- Hypothesis-driven Testing -- Data Driven Investing -- Quantpedia -- QuantConnect Research and Strategy Explorer -- Part II: Foundations of AI and ML in Algorithmic Trading Step-by-step Guide for AI-based Algorithmic Trading -- Chapter 3: Step 1: Problem Definition -- Chapter 4: Step 2: Dataset Preparation -- Data Collection -- Exploratory Data Analysis -- Data Preprocessing -- Handling Missing Data -- Handling Outliers -- Feature Engineering -- Normalization and Standardization of Features -- Transforming Time Series Features to Stationary -- Identification of Cointegrated Time Series with Engle-Granger Test -- Feature Selection -- Correlation Analysis -- Feature Importance Analysis -- Auto-identification of Features -- Dimensionality Reduction/Principal Component Analysis -- Splitting of Dataset into Training, Testing, and Possibly Validation Sets -- How to Split Your Data -- Chapter 5: Step 3: Model Choice, Training, and Application -- Regression -- Linear Regression -- Polynomial Regression -- LASSO Regression -- Ridge Regression -- Markov Switching Dynamic Regression -- Decision Tree Regression -- Support Vector Machines Regression with Wavelet Forecasting -- Classification -- Multiclass Random Forest Model -- Logistic Regression -- Hidden Markov Models -- Gaussian Naive Bayes -- Convolutional Neural Networks -- Ranking -- LGBRanker Ranking -- Clustering -- OPTICS Clustering -- Language Models -- OpenAI Language Model -- Amazon Chronos Model -- FinBERT Model -- Part III: Advanced Applications of AI in Trading and Risk Management -- Getting Started with Source Code -- Chapter 6: Applied Machine Learning -- Example 1-ML Trend Scanning with MLFinlab -- Example 2-Factor Preprocessing Techniques for Regime Detection -- Example 3-Reversion vs. Trending: Strategy Selection by Classification -- Example 4-Alpha by Hidden Markov Models -- Example 5-FX SVM Wavelet Forecasting -- Example 6-Dividend Harvesting Selection of High-Yield Assets -- Example 7-Effect of Positive-Negative Splits Example 8-Stop Loss Based on Historical Volatility and Drawdown Recovery -- Example 9-ML Trading Pairs Selection -- Example 10-Stock Selection through Clustering Fundamental Data -- Example 11-Inverse Volatility Rank and Allocate to Future Contracts -- Example 12-Trading Costs Optimization -- Example 13-PCA Statistical Arbitrage Mean Reversion -- Example 14-Temporal CNN Prediction -- Example 15-Gaussian Classifier for Direction Prediction -- Example 16-LLM Summarization of Tiingo News Articles -- Example 17-Head Shoulders Pattern Matching with CNN -- Example 18-Amazon Chronos Model -- Example 19-FinBERT Model -- Chapter 7: Better Hedging with Reinforcement Learning -- Introduction -- A New AI Trading Assistant -- Continuous Hedging Is Not Required -- Machine Learning Comes to the Rescue -- A Simplified but Effective Reinforcement Learning Approach -- Overview of the Reinforcement Learning -- Identification -- Simulation -- Ref inement Training on Actual Market Data -- Testing and Implementation -- Implementation on QuantConnect -- Primary Research Notebook -- The Policy Network -- Model Functions -- Fine-tuning with Market Data -- Results -- Conclusion -- Chapter 8: AI for Risk Management and Optimization -- What Is Corrective AI and Conditional Parameter Optimization? -- Feature Engineering -- Applying Corrective AI to Daily Seasonal Forex Trading -- What Is Conditional Parameter Optimization? -- Applying Conditional Parameter Optimization to an ETF Strategy -- Unconditional vs. Conditional Parameter Optimizations -- Performance Comparisons -- Conditional Portfolio Optimization -- Regime Changes Obliterate Traditional Portfolio Optimization Methods -- Learning to Optimize -- Ranking Is Easier Than Predicting -- The Fama-French Lineage -- Comparison with Conventional Optimization Methods -- Model Tactical Asset Allocation Portfolio CPO Software-as-a-Service -- Conclusion -- Definitions of Spread_EMA & -- Spread_VAR -- Chapter 9: Application of Large Language Models and Generative AI in Trading -- Role of Generative AI in Creating Alpha -- Selecting an LLM for Building a Generative AI Application -- Prompt Engineering -- Prompt Engineering in Practice -- Addressing Model "Hallucination -- Question Answering Using a Retrieval Augmented Application in SageMaker Canvas -- RAG Application Costs and Optimization Techniques -- Testing Our Infrastructure -- Summarization -- Useful AI Platforms and Services -- ChatGPT -- Gemini -- Bedrock -- SageMaker -- Q Business -- References -- Subject Index -- Code Index -- EULA. Chan, Ernest P. Sonstige oth Broad, Jared Sonstige oth Sun, Philip Sonstige oth Singh, Vivek Sonstige oth Erscheint auch als Druck-Ausgabe Pik, Jiri Hands-On AI Trading with Python, QuantConnect, and AWS Newark : John Wiley & Sons, Incorporated,c2025 9781394268436 |
spellingShingle | Pik, Jiri Hands-On AI Trading with Python, QuantConnect, and AWS. Cover -- Title Page -- Copyright -- Contents -- Biographies -- Preface: QuantConnect -- Introduction -- Part I: Foundations of Capital Markets and Quantitative Trading -- Chapter 1: Foundations of Capital Markets -- Market Mechanics -- Market Participants -- Trading Is the "Play -- The Stage and Basic Rules of Trading-The Limit Order Book -- Actors-Liquidity Trader, Market Maker, and Informed Trader -- Liquidity Trader -- Market Maker -- Informed Trader -- AI Actors Wanted -- Data and Data Feeds -- Custom and Alternative Data -- Brokerages and Transaction Costs -- Transaction Costs -- Security Identifiers -- Assets and Derivatives -- US Equities -- US Equity Options -- Index Options -- US Futures -- Cryptocurrency -- Chapter 2: Foundations of Quantitative Trading -- Research Process -- Research -- Backtesting -- Parameter Optimization -- Paper and Live Trading -- Testing and Debugging Tools -- Debuggers -- Logging -- Charting -- Object Store -- Coding Process -- Time and Look-ahead Bias -- Look-ahead Bias -- Market Hours and Scheduling -- Strategy Styles -- Trading Signals -- Allocating Capital -- Regimes and Portfolios of Strategies -- Parameter Sensitivity Testing and Optimization -- 1. Remove -- 2. Replace -- 3. Reduce -- Parameter Sensitivity Testing -- Margin Modeling -- Equities -- Equity Options -- Futures -- Diversification and Asset Selection -- Fundamental Asset Selection -- ETF Constituents Asset Selection -- Dollar-Volume Asset Selection -- Universe Settings -- Indicators and Other Data Transformations -- Automatic Indicators -- Manual Indicators -- Indicator Warm Up -- Storing Objects -- Indicator Events -- Sourcing Ideas -- Hypothesis-driven Testing -- Data Driven Investing -- Quantpedia -- QuantConnect Research and Strategy Explorer -- Part II: Foundations of AI and ML in Algorithmic Trading Step-by-step Guide for AI-based Algorithmic Trading -- Chapter 3: Step 1: Problem Definition -- Chapter 4: Step 2: Dataset Preparation -- Data Collection -- Exploratory Data Analysis -- Data Preprocessing -- Handling Missing Data -- Handling Outliers -- Feature Engineering -- Normalization and Standardization of Features -- Transforming Time Series Features to Stationary -- Identification of Cointegrated Time Series with Engle-Granger Test -- Feature Selection -- Correlation Analysis -- Feature Importance Analysis -- Auto-identification of Features -- Dimensionality Reduction/Principal Component Analysis -- Splitting of Dataset into Training, Testing, and Possibly Validation Sets -- How to Split Your Data -- Chapter 5: Step 3: Model Choice, Training, and Application -- Regression -- Linear Regression -- Polynomial Regression -- LASSO Regression -- Ridge Regression -- Markov Switching Dynamic Regression -- Decision Tree Regression -- Support Vector Machines Regression with Wavelet Forecasting -- Classification -- Multiclass Random Forest Model -- Logistic Regression -- Hidden Markov Models -- Gaussian Naive Bayes -- Convolutional Neural Networks -- Ranking -- LGBRanker Ranking -- Clustering -- OPTICS Clustering -- Language Models -- OpenAI Language Model -- Amazon Chronos Model -- FinBERT Model -- Part III: Advanced Applications of AI in Trading and Risk Management -- Getting Started with Source Code -- Chapter 6: Applied Machine Learning -- Example 1-ML Trend Scanning with MLFinlab -- Example 2-Factor Preprocessing Techniques for Regime Detection -- Example 3-Reversion vs. Trending: Strategy Selection by Classification -- Example 4-Alpha by Hidden Markov Models -- Example 5-FX SVM Wavelet Forecasting -- Example 6-Dividend Harvesting Selection of High-Yield Assets -- Example 7-Effect of Positive-Negative Splits Example 8-Stop Loss Based on Historical Volatility and Drawdown Recovery -- Example 9-ML Trading Pairs Selection -- Example 10-Stock Selection through Clustering Fundamental Data -- Example 11-Inverse Volatility Rank and Allocate to Future Contracts -- Example 12-Trading Costs Optimization -- Example 13-PCA Statistical Arbitrage Mean Reversion -- Example 14-Temporal CNN Prediction -- Example 15-Gaussian Classifier for Direction Prediction -- Example 16-LLM Summarization of Tiingo News Articles -- Example 17-Head Shoulders Pattern Matching with CNN -- Example 18-Amazon Chronos Model -- Example 19-FinBERT Model -- Chapter 7: Better Hedging with Reinforcement Learning -- Introduction -- A New AI Trading Assistant -- Continuous Hedging Is Not Required -- Machine Learning Comes to the Rescue -- A Simplified but Effective Reinforcement Learning Approach -- Overview of the Reinforcement Learning -- Identification -- Simulation -- Ref inement Training on Actual Market Data -- Testing and Implementation -- Implementation on QuantConnect -- Primary Research Notebook -- The Policy Network -- Model Functions -- Fine-tuning with Market Data -- Results -- Conclusion -- Chapter 8: AI for Risk Management and Optimization -- What Is Corrective AI and Conditional Parameter Optimization? -- Feature Engineering -- Applying Corrective AI to Daily Seasonal Forex Trading -- What Is Conditional Parameter Optimization? -- Applying Conditional Parameter Optimization to an ETF Strategy -- Unconditional vs. Conditional Parameter Optimizations -- Performance Comparisons -- Conditional Portfolio Optimization -- Regime Changes Obliterate Traditional Portfolio Optimization Methods -- Learning to Optimize -- Ranking Is Easier Than Predicting -- The Fama-French Lineage -- Comparison with Conventional Optimization Methods -- Model Tactical Asset Allocation Portfolio CPO Software-as-a-Service -- Conclusion -- Definitions of Spread_EMA & -- Spread_VAR -- Chapter 9: Application of Large Language Models and Generative AI in Trading -- Role of Generative AI in Creating Alpha -- Selecting an LLM for Building a Generative AI Application -- Prompt Engineering -- Prompt Engineering in Practice -- Addressing Model "Hallucination -- Question Answering Using a Retrieval Augmented Application in SageMaker Canvas -- RAG Application Costs and Optimization Techniques -- Testing Our Infrastructure -- Summarization -- Useful AI Platforms and Services -- ChatGPT -- Gemini -- Bedrock -- SageMaker -- Q Business -- References -- Subject Index -- Code Index -- EULA. |
title | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_auth | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_exact_search | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_full | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_fullStr | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_full_unstemmed | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_short | Hands-On AI Trading with Python, QuantConnect, and AWS. |
title_sort | hands on ai trading with python quantconnect and aws |
work_keys_str_mv | AT pikjiri handsonaitradingwithpythonquantconnectandaws AT chanernestp handsonaitradingwithpythonquantconnectandaws AT broadjared handsonaitradingwithpythonquantconnectandaws AT sunphilip handsonaitradingwithpythonquantconnectandaws AT singhvivek handsonaitradingwithpythonquantconnectandaws |