Medical Image Computing and Computer Assisted Intervention - MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II.
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cham
Springer
2023
|
Ausgabe: | 1st ed |
Schriftenreihe: | Lecture Notes in Computer Science Series
v.14221 |
Schlagwörter: | |
Links: | https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30765501 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (828 Seiten) |
ISBN: | 9783031438950 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV050100669 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241218s2023 xx o|||| 00||| eng d | ||
020 | |a 9783031438950 |9 978-3-031-43895-0 | ||
035 | |a (ZDB-30-PQE)EBC30765501 | ||
035 | |a (ZDB-30-PAD)EBC30765501 | ||
035 | |a (ZDB-89-EBL)EBL30765501 | ||
035 | |a (OCoLC)1401635047 | ||
035 | |a (DE-599)BVBBV050100669 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 381 | |
100 | 1 | |a Greenspan, Hayit |e Verfasser |4 aut | |
245 | 1 | 0 | |a Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 |b 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
250 | |a 1st ed | ||
264 | 1 | |a Cham |b Springer |c 2023 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (828 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Computer Science Series |v v.14221 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Organization -- Contents - Part II -- Machine Learning - Learning Strategies -- OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification -- 1 Introduction -- 2 Method -- 2.1 Framework Overview -- 2.2 Feature-Based Target Sample Selection -- 2.3 Model-Based Informative Sample Selection -- 3 Experiments -- 3.1 Dataset, Settings, Metrics and Competitors -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 4 Conclusion -- References -- SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Prompt-Based Visual Model -- 2.2 Diversified Visual Prompt Tuning -- 2.3 Tandem Selective Labeling -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentation -- 1 Introduction -- 2 COLosSAL Benchmark Definition -- 2.1 3D Medical Image Datasets -- 2.2 Cold-Start AL Scenarios -- 2.3 Baseline Cold-Start Active Learners -- 2.4 Implementation Details -- 3 Experimental Results -- 4 Conclusion -- References -- Continual Learning for Abdominal Multi-organ and Tumor Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Pseudo Labels for Multi-organ Segmentation -- 2.2 The Proposed Multi-organ Segmentation Model -- 2.3 Computational Complexity Analysis -- 3 Experiment and Result -- 4 Conclusion -- References -- Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI -- 1 Introduction -- 2 Methodology -- 2.1 cBRN Guided Divergence-Aware Decoupled Dual-Flow -- 2.2 HSI Pseudo-label Distillation with Momentum MixUp Decay -- 3 Experiments and Results -- 3.1 Cross-Subset Structure Incremental Evolving -- 3.2 Cross-Modality Structure Incremental Evolving -- 4 Conclusion -- References | |
505 | 8 | |a PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images -- 1 Introduction -- 2 Method -- 2.1 Mathematical Notations and Formulation -- 2.2 Outer Loop: Divergence Based AL -- 2.3 Inner Loop: Network Optimization and Label Refinement -- 3 Experiments and Results -- 3.1 Experiment Settings -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 3.4 Application on In-house Dataset -- 4 Conclusion -- References -- Adapter Learning in Pretrained Feature Extractor for Continual Learning of Diseases -- 1 Introduction -- 2 Method -- 2.1 Overall Framework -- 2.2 Task-Specific Adapters -- 2.3 Task-Specific Head -- 3 Experiment Results -- 3.1 Experimental Setup -- 3.2 Result Analysis -- 4 Conclusion -- References -- EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Segmentation Network -- 3.2 Uncertainty in Prediction -- 3.3 Superpixel Selection -- 4 Experiments and Results -- 4.1 Datasets and Networks -- 4.2 Comparisons -- 5 Conclusion -- References -- Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Region-Based Active Learning for WSI Annotation -- 2.2 Region Selection Methods -- 2.3 WSI Semantic Segmentation Framework -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Discussion and Conclusion -- References -- CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Sampling -- 3.2 Model Architecture -- 3.3 Loss Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Arts -- 4.4 Ablations -- 5 Conclusion -- References | |
505 | 8 | |a VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setup -- 2.2 Self-supervised Task Generation -- 2.3 Volumetric Segmentation Strategy -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- L3DMC: Lifelong Learning Using Distillation via Mixed-Curvature Space -- 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 3.1 Classifier and Exemplar Selection -- 4 Related Work -- 5 Experimental Details -- 6 Results and Discussion -- 7 Conclusion -- References -- Machine Learning - Explainability, Bias, and Uncertainty I -- Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization -- 1 Introduction -- 2 Methods -- 2.1 Preliminaries and Basic Framework -- 2.2 Superpixel-Guided Scribble Walking -- 2.3 Class-Wise Contrastive Regularization -- 3 Experiments and Results -- 4 Conclusion -- References -- SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Test-Time Adaptation Review -- 2.2 Semantic Adaptive Learning Rate -- 2.3 Semantic Proxy Contrastive Learning -- 2.4 Training and Adaptation Procedure -- 3 Experiments -- 3.1 Materials -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Study -- 4 Conclusion -- References -- SFusion: Self-attention Based N-to-One Multimodal Fusion Block -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Correlation Extraction -- 2.3 Modal Attention -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Baseline Methods -- 3.3 Results -- 4 Conclusion -- References -- FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 FedGrav | |
505 | 8 | |a 3 Experiments -- 3.1 Datesets and Settings -- 3.2 Results -- 3.3 Ablation Study -- 4 Conclusion -- References -- Category-Independent Visual Explanation for Medical Deep Network Understanding -- 1 Introduction -- 2 Related Works -- 3 Method -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Clinical Application -- 5 Conclusion -- References -- Self-aware and Cross-Sample Prototypical Learning for Semi-supervised Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Self-cross Prototypical Prediction -- 2.2 Prototypical Prediction Uncertainty -- 2.3 Unsupervised Prototypical Consistency Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants -- 1 Introduction -- 2 Method -- 2.1 Spherical Attention Encoding -- 2.2 Hierarchically Spherical Attention Decoding -- 2.3 Domain Knowledge-Guided Explanation Enhancement -- 3 Experiments -- 4 Conclusion -- References -- Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images -- 1 Introduction -- 2 Methodology -- 2.1 Centroid-Aware Feature Recalibration -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Comparative Experiments -- 3.3 Implementation Details -- 3.4 Result and Discussions -- 4 Conclusions -- References -- Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy Staging -- 1 Introduction -- 2 Methodology -- 2.1 Temperature-Warmed Evidential Uncertainty Head -- 2.2 Uncertainty-Aware Weighting Module -- 3 Loss Function -- 4 Experimental Results -- 5 Conclusion -- References -- Few Shot Medical Image Segmentation with Cross Attention Transformer -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Network Overview | |
505 | 8 | |a 2.3 Mask Incorporated Feature Extraction -- 2.4 Cross Masked Attention Transformer -- 2.5 Iterative Refinement Framework -- 3 Experiment -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Art Methods -- 3.4 Ablation Study -- 4 Conclusion -- References -- ECL: Class-Enhancement Contrastive Learning for Long-Tailed Skin Lesion Classification -- 1 Introduction -- 2 Methods -- 2.1 Hybrid-Proxy Model -- 2.2 Balanced-Hybrid-Proxy Loss -- 2.3 Balanced-Weighted Cross-Entropy Loss -- 3 Experiment -- 3.1 Dataset and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion -- References -- Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Object-Centric Diffeomorphism as a Generative Model -- 2.2 Online Augmentations with Generative Models -- 3 Experiments and Results -- 3.1 Generative Model Implementation, Training, and Evaluation -- 3.2 Deformation-Based da for Kidney Tumour Segmentation -- 4 Discussion and Conclusions -- References -- Efficient Subclass Segmentation in Medical Images -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Conclusion -- References -- Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification -- 1 Introduction -- 2 Method -- 2.1 Feature Disentanglement -- 3 Experimental Results -- 3.1 Generalized Zero Shot Learning Results -- 3.2 Ablation Studies -- 4 Conclusion -- References -- Prediction of Cognitive Scores by Joint Use of Movie-Watching fMRI Connectivity and Eye Tracking via Attention-CensNet -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Classification of Population via Attention-CensNet -- 3 Results -- 3.1 Implementation Details -- 3.2 Ablation Study | |
505 | 8 | |a 3.3 Comparison with State-of-the-Arts | |
650 | 4 | |a Diagnostic imaging-Data processing-Congresses | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2023 |z Vancouver |2 gnd-content | |
700 | 1 | |a Madabhushi, Anant |e Sonstige |4 oth | |
700 | 1 | |a Mousavi, Parvin |e Sonstige |4 oth | |
700 | 1 | |a Salcudean, Septimiu |e Sonstige |4 oth | |
700 | 1 | |a Duncan, James |e Sonstige |4 oth | |
700 | 1 | |a Syeda-Mahmood, Tanveer |e Sonstige |4 oth | |
700 | 1 | |a Taylor, Russell |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Greenspan, Hayit |t Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 |d Cham : Springer,c2023 |z 9783031438943 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035437831 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30765501 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820981608410251264 |
---|---|
adam_text | |
any_adam_object | |
author | Greenspan, Hayit |
author_facet | Greenspan, Hayit |
author_role | aut |
author_sort | Greenspan, Hayit |
author_variant | h g hg |
building | Verbundindex |
bvnumber | BV050100669 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Organization -- Contents - Part II -- Machine Learning - Learning Strategies -- OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification -- 1 Introduction -- 2 Method -- 2.1 Framework Overview -- 2.2 Feature-Based Target Sample Selection -- 2.3 Model-Based Informative Sample Selection -- 3 Experiments -- 3.1 Dataset, Settings, Metrics and Competitors -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 4 Conclusion -- References -- SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Prompt-Based Visual Model -- 2.2 Diversified Visual Prompt Tuning -- 2.3 Tandem Selective Labeling -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentation -- 1 Introduction -- 2 COLosSAL Benchmark Definition -- 2.1 3D Medical Image Datasets -- 2.2 Cold-Start AL Scenarios -- 2.3 Baseline Cold-Start Active Learners -- 2.4 Implementation Details -- 3 Experimental Results -- 4 Conclusion -- References -- Continual Learning for Abdominal Multi-organ and Tumor Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Pseudo Labels for Multi-organ Segmentation -- 2.2 The Proposed Multi-organ Segmentation Model -- 2.3 Computational Complexity Analysis -- 3 Experiment and Result -- 4 Conclusion -- References -- Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI -- 1 Introduction -- 2 Methodology -- 2.1 cBRN Guided Divergence-Aware Decoupled Dual-Flow -- 2.2 HSI Pseudo-label Distillation with Momentum MixUp Decay -- 3 Experiments and Results -- 3.1 Cross-Subset Structure Incremental Evolving -- 3.2 Cross-Modality Structure Incremental Evolving -- 4 Conclusion -- References PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images -- 1 Introduction -- 2 Method -- 2.1 Mathematical Notations and Formulation -- 2.2 Outer Loop: Divergence Based AL -- 2.3 Inner Loop: Network Optimization and Label Refinement -- 3 Experiments and Results -- 3.1 Experiment Settings -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 3.4 Application on In-house Dataset -- 4 Conclusion -- References -- Adapter Learning in Pretrained Feature Extractor for Continual Learning of Diseases -- 1 Introduction -- 2 Method -- 2.1 Overall Framework -- 2.2 Task-Specific Adapters -- 2.3 Task-Specific Head -- 3 Experiment Results -- 3.1 Experimental Setup -- 3.2 Result Analysis -- 4 Conclusion -- References -- EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Segmentation Network -- 3.2 Uncertainty in Prediction -- 3.3 Superpixel Selection -- 4 Experiments and Results -- 4.1 Datasets and Networks -- 4.2 Comparisons -- 5 Conclusion -- References -- Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Region-Based Active Learning for WSI Annotation -- 2.2 Region Selection Methods -- 2.3 WSI Semantic Segmentation Framework -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Discussion and Conclusion -- References -- CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Sampling -- 3.2 Model Architecture -- 3.3 Loss Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Arts -- 4.4 Ablations -- 5 Conclusion -- References VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setup -- 2.2 Self-supervised Task Generation -- 2.3 Volumetric Segmentation Strategy -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- L3DMC: Lifelong Learning Using Distillation via Mixed-Curvature Space -- 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 3.1 Classifier and Exemplar Selection -- 4 Related Work -- 5 Experimental Details -- 6 Results and Discussion -- 7 Conclusion -- References -- Machine Learning - Explainability, Bias, and Uncertainty I -- Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization -- 1 Introduction -- 2 Methods -- 2.1 Preliminaries and Basic Framework -- 2.2 Superpixel-Guided Scribble Walking -- 2.3 Class-Wise Contrastive Regularization -- 3 Experiments and Results -- 4 Conclusion -- References -- SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Test-Time Adaptation Review -- 2.2 Semantic Adaptive Learning Rate -- 2.3 Semantic Proxy Contrastive Learning -- 2.4 Training and Adaptation Procedure -- 3 Experiments -- 3.1 Materials -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Study -- 4 Conclusion -- References -- SFusion: Self-attention Based N-to-One Multimodal Fusion Block -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Correlation Extraction -- 2.3 Modal Attention -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Baseline Methods -- 3.3 Results -- 4 Conclusion -- References -- FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 FedGrav 3 Experiments -- 3.1 Datesets and Settings -- 3.2 Results -- 3.3 Ablation Study -- 4 Conclusion -- References -- Category-Independent Visual Explanation for Medical Deep Network Understanding -- 1 Introduction -- 2 Related Works -- 3 Method -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Clinical Application -- 5 Conclusion -- References -- Self-aware and Cross-Sample Prototypical Learning for Semi-supervised Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Self-cross Prototypical Prediction -- 2.2 Prototypical Prediction Uncertainty -- 2.3 Unsupervised Prototypical Consistency Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants -- 1 Introduction -- 2 Method -- 2.1 Spherical Attention Encoding -- 2.2 Hierarchically Spherical Attention Decoding -- 2.3 Domain Knowledge-Guided Explanation Enhancement -- 3 Experiments -- 4 Conclusion -- References -- Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images -- 1 Introduction -- 2 Methodology -- 2.1 Centroid-Aware Feature Recalibration -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Comparative Experiments -- 3.3 Implementation Details -- 3.4 Result and Discussions -- 4 Conclusions -- References -- Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy Staging -- 1 Introduction -- 2 Methodology -- 2.1 Temperature-Warmed Evidential Uncertainty Head -- 2.2 Uncertainty-Aware Weighting Module -- 3 Loss Function -- 4 Experimental Results -- 5 Conclusion -- References -- Few Shot Medical Image Segmentation with Cross Attention Transformer -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Network Overview 2.3 Mask Incorporated Feature Extraction -- 2.4 Cross Masked Attention Transformer -- 2.5 Iterative Refinement Framework -- 3 Experiment -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Art Methods -- 3.4 Ablation Study -- 4 Conclusion -- References -- ECL: Class-Enhancement Contrastive Learning for Long-Tailed Skin Lesion Classification -- 1 Introduction -- 2 Methods -- 2.1 Hybrid-Proxy Model -- 2.2 Balanced-Hybrid-Proxy Loss -- 2.3 Balanced-Weighted Cross-Entropy Loss -- 3 Experiment -- 3.1 Dataset and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion -- References -- Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Object-Centric Diffeomorphism as a Generative Model -- 2.2 Online Augmentations with Generative Models -- 3 Experiments and Results -- 3.1 Generative Model Implementation, Training, and Evaluation -- 3.2 Deformation-Based da for Kidney Tumour Segmentation -- 4 Discussion and Conclusions -- References -- Efficient Subclass Segmentation in Medical Images -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Conclusion -- References -- Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification -- 1 Introduction -- 2 Method -- 2.1 Feature Disentanglement -- 3 Experimental Results -- 3.1 Generalized Zero Shot Learning Results -- 3.2 Ablation Studies -- 4 Conclusion -- References -- Prediction of Cognitive Scores by Joint Use of Movie-Watching fMRI Connectivity and Eye Tracking via Attention-CensNet -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Classification of Population via Attention-CensNet -- 3 Results -- 3.1 Implementation Details -- 3.2 Ablation Study 3.3 Comparison with State-of-the-Arts |
ctrlnum | (ZDB-30-PQE)EBC30765501 (ZDB-30-PAD)EBC30765501 (ZDB-89-EBL)EBL30765501 (OCoLC)1401635047 (DE-599)BVBBV050100669 |
dewey-full | 381 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 381 - Commerce (Trade) |
dewey-raw | 381 |
dewey-search | 381 |
dewey-sort | 3381 |
dewey-tens | 380 - Commerce, communications, transportation |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV050100669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241218s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031438950</subfield><subfield code="9">978-3-031-43895-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC30765501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC30765501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL30765501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401635047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050100669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">381</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Greenspan, Hayit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Medical Image Computing and Computer Assisted Intervention - MICCAI 2023</subfield><subfield code="b">26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (828 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Computer Science Series</subfield><subfield code="v">v.14221</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Organization -- Contents - Part II -- Machine Learning - Learning Strategies -- OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification -- 1 Introduction -- 2 Method -- 2.1 Framework Overview -- 2.2 Feature-Based Target Sample Selection -- 2.3 Model-Based Informative Sample Selection -- 3 Experiments -- 3.1 Dataset, Settings, Metrics and Competitors -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 4 Conclusion -- References -- SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Prompt-Based Visual Model -- 2.2 Diversified Visual Prompt Tuning -- 2.3 Tandem Selective Labeling -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentation -- 1 Introduction -- 2 COLosSAL Benchmark Definition -- 2.1 3D Medical Image Datasets -- 2.2 Cold-Start AL Scenarios -- 2.3 Baseline Cold-Start Active Learners -- 2.4 Implementation Details -- 3 Experimental Results -- 4 Conclusion -- References -- Continual Learning for Abdominal Multi-organ and Tumor Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Pseudo Labels for Multi-organ Segmentation -- 2.2 The Proposed Multi-organ Segmentation Model -- 2.3 Computational Complexity Analysis -- 3 Experiment and Result -- 4 Conclusion -- References -- Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI -- 1 Introduction -- 2 Methodology -- 2.1 cBRN Guided Divergence-Aware Decoupled Dual-Flow -- 2.2 HSI Pseudo-label Distillation with Momentum MixUp Decay -- 3 Experiments and Results -- 3.1 Cross-Subset Structure Incremental Evolving -- 3.2 Cross-Modality Structure Incremental Evolving -- 4 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images -- 1 Introduction -- 2 Method -- 2.1 Mathematical Notations and Formulation -- 2.2 Outer Loop: Divergence Based AL -- 2.3 Inner Loop: Network Optimization and Label Refinement -- 3 Experiments and Results -- 3.1 Experiment Settings -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 3.4 Application on In-house Dataset -- 4 Conclusion -- References -- Adapter Learning in Pretrained Feature Extractor for Continual Learning of Diseases -- 1 Introduction -- 2 Method -- 2.1 Overall Framework -- 2.2 Task-Specific Adapters -- 2.3 Task-Specific Head -- 3 Experiment Results -- 3.1 Experimental Setup -- 3.2 Result Analysis -- 4 Conclusion -- References -- EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Segmentation Network -- 3.2 Uncertainty in Prediction -- 3.3 Superpixel Selection -- 4 Experiments and Results -- 4.1 Datasets and Networks -- 4.2 Comparisons -- 5 Conclusion -- References -- Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Region-Based Active Learning for WSI Annotation -- 2.2 Region Selection Methods -- 2.3 WSI Semantic Segmentation Framework -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Discussion and Conclusion -- References -- CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Sampling -- 3.2 Model Architecture -- 3.3 Loss Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Arts -- 4.4 Ablations -- 5 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setup -- 2.2 Self-supervised Task Generation -- 2.3 Volumetric Segmentation Strategy -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- L3DMC: Lifelong Learning Using Distillation via Mixed-Curvature Space -- 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 3.1 Classifier and Exemplar Selection -- 4 Related Work -- 5 Experimental Details -- 6 Results and Discussion -- 7 Conclusion -- References -- Machine Learning - Explainability, Bias, and Uncertainty I -- Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization -- 1 Introduction -- 2 Methods -- 2.1 Preliminaries and Basic Framework -- 2.2 Superpixel-Guided Scribble Walking -- 2.3 Class-Wise Contrastive Regularization -- 3 Experiments and Results -- 4 Conclusion -- References -- SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Test-Time Adaptation Review -- 2.2 Semantic Adaptive Learning Rate -- 2.3 Semantic Proxy Contrastive Learning -- 2.4 Training and Adaptation Procedure -- 3 Experiments -- 3.1 Materials -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Study -- 4 Conclusion -- References -- SFusion: Self-attention Based N-to-One Multimodal Fusion Block -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Correlation Extraction -- 2.3 Modal Attention -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Baseline Methods -- 3.3 Results -- 4 Conclusion -- References -- FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 FedGrav</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3 Experiments -- 3.1 Datesets and Settings -- 3.2 Results -- 3.3 Ablation Study -- 4 Conclusion -- References -- Category-Independent Visual Explanation for Medical Deep Network Understanding -- 1 Introduction -- 2 Related Works -- 3 Method -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Clinical Application -- 5 Conclusion -- References -- Self-aware and Cross-Sample Prototypical Learning for Semi-supervised Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Self-cross Prototypical Prediction -- 2.2 Prototypical Prediction Uncertainty -- 2.3 Unsupervised Prototypical Consistency Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants -- 1 Introduction -- 2 Method -- 2.1 Spherical Attention Encoding -- 2.2 Hierarchically Spherical Attention Decoding -- 2.3 Domain Knowledge-Guided Explanation Enhancement -- 3 Experiments -- 4 Conclusion -- References -- Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images -- 1 Introduction -- 2 Methodology -- 2.1 Centroid-Aware Feature Recalibration -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Comparative Experiments -- 3.3 Implementation Details -- 3.4 Result and Discussions -- 4 Conclusions -- References -- Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy Staging -- 1 Introduction -- 2 Methodology -- 2.1 Temperature-Warmed Evidential Uncertainty Head -- 2.2 Uncertainty-Aware Weighting Module -- 3 Loss Function -- 4 Experimental Results -- 5 Conclusion -- References -- Few Shot Medical Image Segmentation with Cross Attention Transformer -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Network Overview</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Mask Incorporated Feature Extraction -- 2.4 Cross Masked Attention Transformer -- 2.5 Iterative Refinement Framework -- 3 Experiment -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Art Methods -- 3.4 Ablation Study -- 4 Conclusion -- References -- ECL: Class-Enhancement Contrastive Learning for Long-Tailed Skin Lesion Classification -- 1 Introduction -- 2 Methods -- 2.1 Hybrid-Proxy Model -- 2.2 Balanced-Hybrid-Proxy Loss -- 2.3 Balanced-Weighted Cross-Entropy Loss -- 3 Experiment -- 3.1 Dataset and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion -- References -- Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Object-Centric Diffeomorphism as a Generative Model -- 2.2 Online Augmentations with Generative Models -- 3 Experiments and Results -- 3.1 Generative Model Implementation, Training, and Evaluation -- 3.2 Deformation-Based da for Kidney Tumour Segmentation -- 4 Discussion and Conclusions -- References -- Efficient Subclass Segmentation in Medical Images -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Conclusion -- References -- Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification -- 1 Introduction -- 2 Method -- 2.1 Feature Disentanglement -- 3 Experimental Results -- 3.1 Generalized Zero Shot Learning Results -- 3.2 Ablation Studies -- 4 Conclusion -- References -- Prediction of Cognitive Scores by Joint Use of Movie-Watching fMRI Connectivity and Eye Tracking via Attention-CensNet -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Classification of Population via Attention-CensNet -- 3 Results -- 3.1 Implementation Details -- 3.2 Ablation Study</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Comparison with State-of-the-Arts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diagnostic imaging-Data processing-Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2023</subfield><subfield code="z">Vancouver</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madabhushi, Anant</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mousavi, Parvin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salcudean, Septimiu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duncan, James</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Syeda-Mahmood, Tanveer</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Russell</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Greenspan, Hayit</subfield><subfield code="t">Medical Image Computing and Computer Assisted Intervention - MICCAI 2023</subfield><subfield code="d">Cham : Springer,c2023</subfield><subfield code="z">9783031438943</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035437831</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=30765501</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2023 Vancouver gnd-content |
genre_facet | Konferenzschrift 2023 Vancouver |
id | DE-604.BV050100669 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T19:23:10Z |
institution | BVB |
isbn | 9783031438950 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035437831 |
oclc_num | 1401635047 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (828 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer |
record_format | marc |
series2 | Lecture Notes in Computer Science Series |
spelling | Greenspan, Hayit Verfasser aut Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. 1st ed Cham Springer 2023 ©2023 1 Online-Ressource (828 Seiten) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computer Science Series v.14221 Description based on publisher supplied metadata and other sources Intro -- Preface -- Organization -- Contents - Part II -- Machine Learning - Learning Strategies -- OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification -- 1 Introduction -- 2 Method -- 2.1 Framework Overview -- 2.2 Feature-Based Target Sample Selection -- 2.3 Model-Based Informative Sample Selection -- 3 Experiments -- 3.1 Dataset, Settings, Metrics and Competitors -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 4 Conclusion -- References -- SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Prompt-Based Visual Model -- 2.2 Diversified Visual Prompt Tuning -- 2.3 Tandem Selective Labeling -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentation -- 1 Introduction -- 2 COLosSAL Benchmark Definition -- 2.1 3D Medical Image Datasets -- 2.2 Cold-Start AL Scenarios -- 2.3 Baseline Cold-Start Active Learners -- 2.4 Implementation Details -- 3 Experimental Results -- 4 Conclusion -- References -- Continual Learning for Abdominal Multi-organ and Tumor Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Pseudo Labels for Multi-organ Segmentation -- 2.2 The Proposed Multi-organ Segmentation Model -- 2.3 Computational Complexity Analysis -- 3 Experiment and Result -- 4 Conclusion -- References -- Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI -- 1 Introduction -- 2 Methodology -- 2.1 cBRN Guided Divergence-Aware Decoupled Dual-Flow -- 2.2 HSI Pseudo-label Distillation with Momentum MixUp Decay -- 3 Experiments and Results -- 3.1 Cross-Subset Structure Incremental Evolving -- 3.2 Cross-Modality Structure Incremental Evolving -- 4 Conclusion -- References PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images -- 1 Introduction -- 2 Method -- 2.1 Mathematical Notations and Formulation -- 2.2 Outer Loop: Divergence Based AL -- 2.3 Inner Loop: Network Optimization and Label Refinement -- 3 Experiments and Results -- 3.1 Experiment Settings -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 3.4 Application on In-house Dataset -- 4 Conclusion -- References -- Adapter Learning in Pretrained Feature Extractor for Continual Learning of Diseases -- 1 Introduction -- 2 Method -- 2.1 Overall Framework -- 2.2 Task-Specific Adapters -- 2.3 Task-Specific Head -- 3 Experiment Results -- 3.1 Experimental Setup -- 3.2 Result Analysis -- 4 Conclusion -- References -- EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Segmentation Network -- 3.2 Uncertainty in Prediction -- 3.3 Superpixel Selection -- 4 Experiments and Results -- 4.1 Datasets and Networks -- 4.2 Comparisons -- 5 Conclusion -- References -- Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Region-Based Active Learning for WSI Annotation -- 2.2 Region Selection Methods -- 2.3 WSI Semantic Segmentation Framework -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Discussion and Conclusion -- References -- CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Sampling -- 3.2 Model Architecture -- 3.3 Loss Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Arts -- 4.4 Ablations -- 5 Conclusion -- References VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setup -- 2.2 Self-supervised Task Generation -- 2.3 Volumetric Segmentation Strategy -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- L3DMC: Lifelong Learning Using Distillation via Mixed-Curvature Space -- 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 3.1 Classifier and Exemplar Selection -- 4 Related Work -- 5 Experimental Details -- 6 Results and Discussion -- 7 Conclusion -- References -- Machine Learning - Explainability, Bias, and Uncertainty I -- Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization -- 1 Introduction -- 2 Methods -- 2.1 Preliminaries and Basic Framework -- 2.2 Superpixel-Guided Scribble Walking -- 2.3 Class-Wise Contrastive Regularization -- 3 Experiments and Results -- 4 Conclusion -- References -- SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Test-Time Adaptation Review -- 2.2 Semantic Adaptive Learning Rate -- 2.3 Semantic Proxy Contrastive Learning -- 2.4 Training and Adaptation Procedure -- 3 Experiments -- 3.1 Materials -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Study -- 4 Conclusion -- References -- SFusion: Self-attention Based N-to-One Multimodal Fusion Block -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Correlation Extraction -- 2.3 Modal Attention -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Baseline Methods -- 3.3 Results -- 4 Conclusion -- References -- FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 FedGrav 3 Experiments -- 3.1 Datesets and Settings -- 3.2 Results -- 3.3 Ablation Study -- 4 Conclusion -- References -- Category-Independent Visual Explanation for Medical Deep Network Understanding -- 1 Introduction -- 2 Related Works -- 3 Method -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Clinical Application -- 5 Conclusion -- References -- Self-aware and Cross-Sample Prototypical Learning for Semi-supervised Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Self-cross Prototypical Prediction -- 2.2 Prototypical Prediction Uncertainty -- 2.3 Unsupervised Prototypical Consistency Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants -- 1 Introduction -- 2 Method -- 2.1 Spherical Attention Encoding -- 2.2 Hierarchically Spherical Attention Decoding -- 2.3 Domain Knowledge-Guided Explanation Enhancement -- 3 Experiments -- 4 Conclusion -- References -- Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images -- 1 Introduction -- 2 Methodology -- 2.1 Centroid-Aware Feature Recalibration -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Comparative Experiments -- 3.3 Implementation Details -- 3.4 Result and Discussions -- 4 Conclusions -- References -- Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy Staging -- 1 Introduction -- 2 Methodology -- 2.1 Temperature-Warmed Evidential Uncertainty Head -- 2.2 Uncertainty-Aware Weighting Module -- 3 Loss Function -- 4 Experimental Results -- 5 Conclusion -- References -- Few Shot Medical Image Segmentation with Cross Attention Transformer -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Network Overview 2.3 Mask Incorporated Feature Extraction -- 2.4 Cross Masked Attention Transformer -- 2.5 Iterative Refinement Framework -- 3 Experiment -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Art Methods -- 3.4 Ablation Study -- 4 Conclusion -- References -- ECL: Class-Enhancement Contrastive Learning for Long-Tailed Skin Lesion Classification -- 1 Introduction -- 2 Methods -- 2.1 Hybrid-Proxy Model -- 2.2 Balanced-Hybrid-Proxy Loss -- 2.3 Balanced-Weighted Cross-Entropy Loss -- 3 Experiment -- 3.1 Dataset and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion -- References -- Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Object-Centric Diffeomorphism as a Generative Model -- 2.2 Online Augmentations with Generative Models -- 3 Experiments and Results -- 3.1 Generative Model Implementation, Training, and Evaluation -- 3.2 Deformation-Based da for Kidney Tumour Segmentation -- 4 Discussion and Conclusions -- References -- Efficient Subclass Segmentation in Medical Images -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Conclusion -- References -- Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification -- 1 Introduction -- 2 Method -- 2.1 Feature Disentanglement -- 3 Experimental Results -- 3.1 Generalized Zero Shot Learning Results -- 3.2 Ablation Studies -- 4 Conclusion -- References -- Prediction of Cognitive Scores by Joint Use of Movie-Watching fMRI Connectivity and Eye Tracking via Attention-CensNet -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Classification of Population via Attention-CensNet -- 3 Results -- 3.1 Implementation Details -- 3.2 Ablation Study 3.3 Comparison with State-of-the-Arts Diagnostic imaging-Data processing-Congresses (DE-588)1071861417 Konferenzschrift 2023 Vancouver gnd-content Madabhushi, Anant Sonstige oth Mousavi, Parvin Sonstige oth Salcudean, Septimiu Sonstige oth Duncan, James Sonstige oth Syeda-Mahmood, Tanveer Sonstige oth Taylor, Russell Sonstige oth Erscheint auch als Druck-Ausgabe Greenspan, Hayit Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 Cham : Springer,c2023 9783031438943 |
spellingShingle | Greenspan, Hayit Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. Intro -- Preface -- Organization -- Contents - Part II -- Machine Learning - Learning Strategies -- OpenAL: An Efficient Deep Active Learning Framework for Open-Set Pathology Image Classification -- 1 Introduction -- 2 Method -- 2.1 Framework Overview -- 2.2 Feature-Based Target Sample Selection -- 2.3 Model-Based Informative Sample Selection -- 3 Experiments -- 3.1 Dataset, Settings, Metrics and Competitors -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 4 Conclusion -- References -- SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Prompt-Based Visual Model -- 2.2 Diversified Visual Prompt Tuning -- 2.3 Tandem Selective Labeling -- 3 Experiments and Results -- 3.1 Experimental Settings -- 3.2 Results -- 4 Conclusions -- References -- COLosSAL: A Benchmark for Cold-Start Active Learning for 3D Medical Image Segmentation -- 1 Introduction -- 2 COLosSAL Benchmark Definition -- 2.1 3D Medical Image Datasets -- 2.2 Cold-Start AL Scenarios -- 2.3 Baseline Cold-Start Active Learners -- 2.4 Implementation Details -- 3 Experimental Results -- 4 Conclusion -- References -- Continual Learning for Abdominal Multi-organ and Tumor Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Pseudo Labels for Multi-organ Segmentation -- 2.2 The Proposed Multi-organ Segmentation Model -- 2.3 Computational Complexity Analysis -- 3 Experiment and Result -- 4 Conclusion -- References -- Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI -- 1 Introduction -- 2 Methodology -- 2.1 cBRN Guided Divergence-Aware Decoupled Dual-Flow -- 2.2 HSI Pseudo-label Distillation with Momentum MixUp Decay -- 3 Experiments and Results -- 3.1 Cross-Subset Structure Incremental Evolving -- 3.2 Cross-Modality Structure Incremental Evolving -- 4 Conclusion -- References PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images -- 1 Introduction -- 2 Method -- 2.1 Mathematical Notations and Formulation -- 2.2 Outer Loop: Divergence Based AL -- 2.3 Inner Loop: Network Optimization and Label Refinement -- 3 Experiments and Results -- 3.1 Experiment Settings -- 3.2 Performance Comparison -- 3.3 Ablation Study -- 3.4 Application on In-house Dataset -- 4 Conclusion -- References -- Adapter Learning in Pretrained Feature Extractor for Continual Learning of Diseases -- 1 Introduction -- 2 Method -- 2.1 Overall Framework -- 2.2 Task-Specific Adapters -- 2.3 Task-Specific Head -- 3 Experiment Results -- 3.1 Experimental Setup -- 3.2 Result Analysis -- 4 Conclusion -- References -- EdgeAL: An Edge Estimation Based Active Learning Approach for OCT Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Segmentation Network -- 3.2 Uncertainty in Prediction -- 3.3 Superpixel Selection -- 4 Experiments and Results -- 4.1 Datasets and Networks -- 4.2 Comparisons -- 5 Conclusion -- References -- Adaptive Region Selection for Active Learning in Whole Slide Image Semantic Segmentation -- 1 Introduction -- 2 Method -- 2.1 Region-Based Active Learning for WSI Annotation -- 2.2 Region Selection Methods -- 2.3 WSI Semantic Segmentation Framework -- 3 Experiments -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Results -- 4 Discussion and Conclusion -- References -- CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Sampling -- 3.2 Model Architecture -- 3.3 Loss Function -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Comparison with State-of-the-Arts -- 4.4 Ablations -- 5 Conclusion -- References VISA-FSS: A Volume-Informed Self Supervised Approach for Few-Shot 3D Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Problem Setup -- 2.2 Self-supervised Task Generation -- 2.3 Volumetric Segmentation Strategy -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- L3DMC: Lifelong Learning Using Distillation via Mixed-Curvature Space -- 1 Introduction -- 2 Preliminaries -- 3 Proposed Method -- 3.1 Classifier and Exemplar Selection -- 4 Related Work -- 5 Experimental Details -- 6 Results and Discussion -- 7 Conclusion -- References -- Machine Learning - Explainability, Bias, and Uncertainty I -- Weakly Supervised Medical Image Segmentation via Superpixel-Guided Scribble Walking and Class-Wise Contrastive Regularization -- 1 Introduction -- 2 Methods -- 2.1 Preliminaries and Basic Framework -- 2.2 Superpixel-Guided Scribble Walking -- 2.3 Class-Wise Contrastive Regularization -- 3 Experiments and Results -- 4 Conclusion -- References -- SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Test-Time Adaptation Review -- 2.2 Semantic Adaptive Learning Rate -- 2.3 Semantic Proxy Contrastive Learning -- 2.4 Training and Adaptation Procedure -- 3 Experiments -- 3.1 Materials -- 3.2 Comparison with State-of-the-Arts -- 3.3 Ablation Study -- 4 Conclusion -- References -- SFusion: Self-attention Based N-to-One Multimodal Fusion Block -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Correlation Extraction -- 2.3 Modal Attention -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Baseline Methods -- 3.3 Results -- 4 Conclusion -- References -- FedGrav: An Adaptive Federated Aggregation Algorithm for Multi-institutional Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 FedGrav 3 Experiments -- 3.1 Datesets and Settings -- 3.2 Results -- 3.3 Ablation Study -- 4 Conclusion -- References -- Category-Independent Visual Explanation for Medical Deep Network Understanding -- 1 Introduction -- 2 Related Works -- 3 Method -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Quantitative Evaluation -- 4.3 Qualitative Evaluation -- 4.4 Clinical Application -- 5 Conclusion -- References -- Self-aware and Cross-Sample Prototypical Learning for Semi-supervised Medical Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Self-cross Prototypical Prediction -- 2.2 Prototypical Prediction Uncertainty -- 2.3 Unsupervised Prototypical Consistency Constraint -- 3 Experiments and Results -- 4 Conclusion -- References -- NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants -- 1 Introduction -- 2 Method -- 2.1 Spherical Attention Encoding -- 2.2 Hierarchically Spherical Attention Decoding -- 2.3 Domain Knowledge-Guided Explanation Enhancement -- 3 Experiments -- 4 Conclusion -- References -- Centroid-Aware Feature Recalibration for Cancer Grading in Pathology Images -- 1 Introduction -- 2 Methodology -- 2.1 Centroid-Aware Feature Recalibration -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Datasets -- 3.2 Comparative Experiments -- 3.3 Implementation Details -- 3.4 Result and Discussions -- 4 Conclusions -- References -- Federated Uncertainty-Aware Aggregation for Fundus Diabetic Retinopathy Staging -- 1 Introduction -- 2 Methodology -- 2.1 Temperature-Warmed Evidential Uncertainty Head -- 2.2 Uncertainty-Aware Weighting Module -- 3 Loss Function -- 4 Experimental Results -- 5 Conclusion -- References -- Few Shot Medical Image Segmentation with Cross Attention Transformer -- 1 Introduction -- 2 Method -- 2.1 Problem Definition -- 2.2 Network Overview 2.3 Mask Incorporated Feature Extraction -- 2.4 Cross Masked Attention Transformer -- 2.5 Iterative Refinement Framework -- 3 Experiment -- 3.1 Dataset and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with State-of-the-Art Methods -- 3.4 Ablation Study -- 4 Conclusion -- References -- ECL: Class-Enhancement Contrastive Learning for Long-Tailed Skin Lesion Classification -- 1 Introduction -- 2 Methods -- 2.1 Hybrid-Proxy Model -- 2.2 Balanced-Hybrid-Proxy Loss -- 2.3 Balanced-Weighted Cross-Entropy Loss -- 3 Experiment -- 3.1 Dataset and Implementation Details -- 3.2 Experimental Results -- 4 Conclusion -- References -- Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in Medical Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 Object-Centric Diffeomorphism as a Generative Model -- 2.2 Online Augmentations with Generative Models -- 3 Experiments and Results -- 3.1 Generative Model Implementation, Training, and Evaluation -- 3.2 Deformation-Based da for Kidney Tumour Segmentation -- 4 Discussion and Conclusions -- References -- Efficient Subclass Segmentation in Medical Images -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Conclusion -- References -- Class Specific Feature Disentanglement and Text Embeddings for Multi-label Generalized Zero Shot CXR Classification -- 1 Introduction -- 2 Method -- 2.1 Feature Disentanglement -- 3 Experimental Results -- 3.1 Generalized Zero Shot Learning Results -- 3.2 Ablation Studies -- 4 Conclusion -- References -- Prediction of Cognitive Scores by Joint Use of Movie-Watching fMRI Connectivity and Eye Tracking via Attention-CensNet -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Classification of Population via Attention-CensNet -- 3 Results -- 3.1 Implementation Details -- 3.2 Ablation Study 3.3 Comparison with State-of-the-Arts Diagnostic imaging-Data processing-Congresses |
subject_GND | (DE-588)1071861417 |
title | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_auth | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_exact_search | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_full | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_fullStr | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_full_unstemmed | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
title_short | Medical Image Computing and Computer Assisted Intervention - MICCAI 2023 |
title_sort | medical image computing and computer assisted intervention miccai 2023 26th international conference vancouver bc canada october 8 12 2023 proceedings part ii |
title_sub | 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II. |
topic | Diagnostic imaging-Data processing-Congresses |
topic_facet | Diagnostic imaging-Data processing-Congresses Konferenzschrift 2023 Vancouver |
work_keys_str_mv | AT greenspanhayit medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT madabhushianant medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT mousaviparvin medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT salcudeanseptimiu medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT duncanjames medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT syedamahmoodtanveer medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii AT taylorrussell medicalimagecomputingandcomputerassistedinterventionmiccai202326thinternationalconferencevancouverbccanadaoctober8122023proceedingspartii |