RAG-Driven Generative AI: Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Rothman, Denis (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Birmingham Packt Publishing, Limited 2024
Ausgabe:1st ed.
Links:https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31691374
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374
Abstract:Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. Environment -- 2. The generator -- 3. The Data -- 4.The query -- Part 2: Advanced techniques and evaluation -- 1. Retrieval metrics -- 2. Naïve RAG -- 3. Advanced RAG -- 4. Modular RAG -- Summary -- Questions -- References -- Further reading -- Chapter 2: RAG Embedding Vector Stores with Deep Lake and OpenAI -- From raw data to embeddings in vector stores -- Organizing RAG in a pipeline -- A RAG-driven generative AI pipeline -- Building a RAG pipeline -- Setting up the environment -- The installation packages and libraries -- The components involved in the installation process -- 1. Data collection and preparation -- Collecting the data -- Preparing the data -- 2. Data embedding and storage -- Retrieving a batch of prepared documents -- Verifying if the vector store exists and creating it if not -- The embedding function -- Adding data to the vector store -- Vector store information -- 3. Augmented input generation -- Input and query retrieval -- Augmented input -- Evaluating the output with cosine similarity -- Summary -- Questions -- References -- Further reading -- Chapter 3: Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI -- Why use index-based RAG? -- Architecture.
Beschreibung:Description based on publisher supplied metadata and other sources
Umfang:1 online resource (335 pages)
ISBN:9781836200901