RAG-Driven Generative AI: Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2024
|
Ausgabe: | 1st ed. |
Links: | https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31691374 https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374 |
Abstract: | Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. Environment -- 2. The generator -- 3. The Data -- 4.The query -- Part 2: Advanced techniques and evaluation -- 1. Retrieval metrics -- 2. Naïve RAG -- 3. Advanced RAG -- 4. Modular RAG -- Summary -- Questions -- References -- Further reading -- Chapter 2: RAG Embedding Vector Stores with Deep Lake and OpenAI -- From raw data to embeddings in vector stores -- Organizing RAG in a pipeline -- A RAG-driven generative AI pipeline -- Building a RAG pipeline -- Setting up the environment -- The installation packages and libraries -- The components involved in the installation process -- 1. Data collection and preparation -- Collecting the data -- Preparing the data -- 2. Data embedding and storage -- Retrieving a batch of prepared documents -- Verifying if the vector store exists and creating it if not -- The embedding function -- Adding data to the vector store -- Vector store information -- 3. Augmented input generation -- Input and query retrieval -- Augmented input -- Evaluating the output with cosine similarity -- Summary -- Questions -- References -- Further reading -- Chapter 3: Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI -- Why use index-based RAG? -- Architecture. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 online resource (335 pages) |
ISBN: | 9781836200901 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049893494 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 241004s2024 xx o|||| 00||| eng d | ||
020 | |a 9781836200901 |9 978-1-83620-090-1 | ||
035 | |a (OCoLC)1466909629 | ||
035 | |a (DE-599)KEP108518949 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-M347 | ||
100 | 1 | |a Rothman, Denis |e Verfasser |4 aut | |
245 | 1 | 0 | |a RAG-Driven Generative AI |b Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
250 | |a 1st ed. | ||
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2024 | |
300 | |a 1 online resource (335 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. Environment -- 2. The generator -- 3. The Data -- 4.The query -- Part 2: Advanced techniques and evaluation -- 1. Retrieval metrics -- 2. Naïve RAG -- 3. Advanced RAG -- 4. Modular RAG -- Summary -- Questions -- References -- Further reading -- Chapter 2: RAG Embedding Vector Stores with Deep Lake and OpenAI -- From raw data to embeddings in vector stores -- Organizing RAG in a pipeline -- A RAG-driven generative AI pipeline -- Building a RAG pipeline -- Setting up the environment -- The installation packages and libraries -- The components involved in the installation process -- 1. Data collection and preparation -- Collecting the data -- Preparing the data -- 2. Data embedding and storage -- Retrieving a batch of prepared documents -- Verifying if the vector store exists and creating it if not -- The embedding function -- Adding data to the vector store -- Vector store information -- 3. Augmented input generation -- Input and query retrieval -- Augmented input -- Evaluating the output with cosine similarity -- Summary -- Questions -- References -- Further reading -- Chapter 3: Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI -- Why use index-based RAG? -- Architecture. | |
856 | 4 | 0 | |m X:EBC |u https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374 |x Aggregator |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035232598 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31691374 |l DE-M347 |p ZDB-30-PQE |q FHM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820961322775347200 |
---|---|
adam_text | |
any_adam_object | |
author | Rothman, Denis |
author_facet | Rothman, Denis |
author_role | aut |
author_sort | Rothman, Denis |
author_variant | d r dr |
building | Verbundindex |
bvnumber | BV049893494 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1466909629 (DE-599)KEP108518949 |
edition | 1st ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV049893494</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">241004s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781836200901</subfield><subfield code="9">978-1-83620-090-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466909629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP108518949</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rothman, Denis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">RAG-Driven Generative AI</subfield><subfield code="b">Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (335 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. Environment -- 2. The generator -- 3. The Data -- 4.The query -- Part 2: Advanced techniques and evaluation -- 1. Retrieval metrics -- 2. Naïve RAG -- 3. Advanced RAG -- 4. Modular RAG -- Summary -- Questions -- References -- Further reading -- Chapter 2: RAG Embedding Vector Stores with Deep Lake and OpenAI -- From raw data to embeddings in vector stores -- Organizing RAG in a pipeline -- A RAG-driven generative AI pipeline -- Building a RAG pipeline -- Setting up the environment -- The installation packages and libraries -- The components involved in the installation process -- 1. Data collection and preparation -- Collecting the data -- Preparing the data -- 2. Data embedding and storage -- Retrieving a batch of prepared documents -- Verifying if the vector store exists and creating it if not -- The embedding function -- Adding data to the vector store -- Vector store information -- 3. Augmented input generation -- Input and query retrieval -- Augmented input -- Evaluating the output with cosine similarity -- Summary -- Questions -- References -- Further reading -- Chapter 3: Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI -- Why use index-based RAG? -- Architecture.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:EBC</subfield><subfield code="u">https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374</subfield><subfield code="x">Aggregator</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035232598</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31691374</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049893494 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T14:00:44Z |
institution | BVB |
isbn | 9781836200901 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035232598 |
oclc_num | 1466909629 |
open_access_boolean | |
owner | DE-M347 |
owner_facet | DE-M347 |
physical | 1 online resource (335 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE FHM_Einzelkauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Rothman, Denis Verfasser aut RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone 1st ed. Birmingham Packt Publishing, Limited 2024 1 online resource (335 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Copyright Page -- Contributors -- Table of Contents -- Preface -- Chapter 1: Why Retrieval Augmented Generation? -- What is RAG? -- Naïve, advanced, and modular RAG configurations -- RAG versus fine-tuning -- The RAG ecosystem -- The retriever (D) -- Collect (D1) -- Process (D2) -- Storage (D3) -- Retrieval query (D4) -- The generator (G) -- Input (G1) -- Augmented input with HF (G2) -- Prompt engineering (G3) -- Generation and output (G4) -- The evaluator (E) -- Metrics (E1) -- Human feedback (E2) -- The trainer (T) -- Naïve, advanced, and modular RAG in code -- Part 1: Foundations and basic implementation -- 1. Environment -- 2. The generator -- 3. The Data -- 4.The query -- Part 2: Advanced techniques and evaluation -- 1. Retrieval metrics -- 2. Naïve RAG -- 3. Advanced RAG -- 4. Modular RAG -- Summary -- Questions -- References -- Further reading -- Chapter 2: RAG Embedding Vector Stores with Deep Lake and OpenAI -- From raw data to embeddings in vector stores -- Organizing RAG in a pipeline -- A RAG-driven generative AI pipeline -- Building a RAG pipeline -- Setting up the environment -- The installation packages and libraries -- The components involved in the installation process -- 1. Data collection and preparation -- Collecting the data -- Preparing the data -- 2. Data embedding and storage -- Retrieving a batch of prepared documents -- Verifying if the vector store exists and creating it if not -- The embedding function -- Adding data to the vector store -- Vector store information -- 3. Augmented input generation -- Input and query retrieval -- Augmented input -- Evaluating the output with cosine similarity -- Summary -- Questions -- References -- Further reading -- Chapter 3: Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI -- Why use index-based RAG? -- Architecture. X:EBC https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374 Aggregator |
spellingShingle | Rothman, Denis RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_auth | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_exact_search | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_full | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_fullStr | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_full_unstemmed | RAG-Driven Generative AI Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
title_short | RAG-Driven Generative AI |
title_sort | rag driven generative ai build custom retrieval augmented generation pipelines with llamaindex deep lake and pinecone |
title_sub | Build Custom Retrieval Augmented Generation Pipelines with LlamaIndex, Deep Lake, and Pinecone |
url | https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31691374 |
work_keys_str_mv | AT rothmandenis ragdrivengenerativeaibuildcustomretrievalaugmentedgenerationpipelineswithllamaindexdeeplakeandpinecone |