Generative AI Foundations in Python: Discover Key Techniques and Navigate Modern Challenges in LLMs
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham
Packt Publishing, Limited
2024
|
Ausgabe: | 1st ed. |
Links: | https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31516396 https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31516396 |
Abstract: | Intro -- Title Page -- Copyright and Credits -- Dedications -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Foundations of Generative AI and the Evolution of Large Language Models -- Chapter 1: Understanding Generative AI: An Introduction -- Generative AI -- Distinguishing generative AI from other AI models -- Briefly surveying generative approaches -- Clarifying misconceptions between discriminative and generative paradigms -- Choosing the right paradigm -- Looking back at the evolution of generative AI -- Overview of traditional methods in NLP -- Arrival and evolution of transformer-based models -- Development and impact of GPT-4 -- Looking ahead at risks and implications -- Introducing use cases of generative AI -- The future of generative AI applications -- Summary -- References -- Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers -- Understanding General Artificial Intelligence (GAI) Types - distinguishing features of GANs, diffusers, and transformers -- Deconstructing GAI methods - exploring GANs, diffusers, and transformers -- A closer look at GANs -- A closer look at diffusion models -- A closer look at generative transformers -- Applying GAI models - image generation using GANs, diffusers, and transformers -- Working with Jupyter Notebook and Google Colab -- Stable diffusion transformer -- Scoring with the CLIP model -- Summary -- References -- Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact of the Transformer -- Early approaches in NLP -- Advent of neural language models -- Distributed representations -- Transfer Learning -- Advent of NNs in NLP -- The emergence of the Transformer in advanced language models -- Components of the transformer architecture -- Sequence-to-sequence learning. |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 online resource (190 pages) |
ISBN: | 9781835464915 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049829298 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240822s2024 xx o|||| 00||| eng d | ||
020 | |a 9781835464915 |9 978-1-83546-491-5 | ||
035 | |a (OCoLC)1454750207 | ||
035 | |a (DE-599)KEP104733888 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-M347 | ||
082 | 0 | |a 006.3 | |
100 | 1 | |a Rodriguez, Carlos |e Verfasser |4 aut | |
245 | 1 | 0 | |a Generative AI Foundations in Python |b Discover Key Techniques and Navigate Modern Challenges in LLMs |
250 | |a 1st ed. | ||
264 | 1 | |a Birmingham |b Packt Publishing, Limited |c 2024 | |
300 | |a 1 online resource (190 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Intro -- Title Page -- Copyright and Credits -- Dedications -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Foundations of Generative AI and the Evolution of Large Language Models -- Chapter 1: Understanding Generative AI: An Introduction -- Generative AI -- Distinguishing generative AI from other AI models -- Briefly surveying generative approaches -- Clarifying misconceptions between discriminative and generative paradigms -- Choosing the right paradigm -- Looking back at the evolution of generative AI -- Overview of traditional methods in NLP -- Arrival and evolution of transformer-based models -- Development and impact of GPT-4 -- Looking ahead at risks and implications -- Introducing use cases of generative AI -- The future of generative AI applications -- Summary -- References -- Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers -- Understanding General Artificial Intelligence (GAI) Types - distinguishing features of GANs, diffusers, and transformers -- Deconstructing GAI methods - exploring GANs, diffusers, and transformers -- A closer look at GANs -- A closer look at diffusion models -- A closer look at generative transformers -- Applying GAI models - image generation using GANs, diffusers, and transformers -- Working with Jupyter Notebook and Google Colab -- Stable diffusion transformer -- Scoring with the CLIP model -- Summary -- References -- Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact of the Transformer -- Early approaches in NLP -- Advent of neural language models -- Distributed representations -- Transfer Learning -- Advent of NNs in NLP -- The emergence of the Transformer in advanced language models -- Components of the transformer architecture -- Sequence-to-sequence learning. | |
700 | 1 | |a Shaikh, Samira |4 ctb | |
776 | 0 | |z 9781835460825 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781835460825 |
856 | 4 | 0 | |m X:EBC |u https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31516396 |x Aggregator |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035169280 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31516396 |l DE-M347 |p ZDB-30-PQE |q FHM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1818992243735789568 |
---|---|
any_adam_object | |
author | Rodriguez, Carlos |
author2 | Shaikh, Samira |
author2_role | ctb |
author2_variant | s s ss |
author_facet | Rodriguez, Carlos Shaikh, Samira |
author_role | aut |
author_sort | Rodriguez, Carlos |
author_variant | c r cr |
building | Verbundindex |
bvnumber | BV049829298 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1454750207 (DE-599)KEP104733888 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03174nam a22003731c 4500</leader><controlfield tag="001">BV049829298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240822s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781835464915</subfield><subfield code="9">978-1-83546-491-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1454750207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP104733888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rodriguez, Carlos</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generative AI Foundations in Python</subfield><subfield code="b">Discover Key Techniques and Navigate Modern Challenges in LLMs</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing, Limited</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (190 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Title Page -- Copyright and Credits -- Dedications -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Foundations of Generative AI and the Evolution of Large Language Models -- Chapter 1: Understanding Generative AI: An Introduction -- Generative AI -- Distinguishing generative AI from other AI models -- Briefly surveying generative approaches -- Clarifying misconceptions between discriminative and generative paradigms -- Choosing the right paradigm -- Looking back at the evolution of generative AI -- Overview of traditional methods in NLP -- Arrival and evolution of transformer-based models -- Development and impact of GPT-4 -- Looking ahead at risks and implications -- Introducing use cases of generative AI -- The future of generative AI applications -- Summary -- References -- Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers -- Understanding General Artificial Intelligence (GAI) Types - distinguishing features of GANs, diffusers, and transformers -- Deconstructing GAI methods - exploring GANs, diffusers, and transformers -- A closer look at GANs -- A closer look at diffusion models -- A closer look at generative transformers -- Applying GAI models - image generation using GANs, diffusers, and transformers -- Working with Jupyter Notebook and Google Colab -- Stable diffusion transformer -- Scoring with the CLIP model -- Summary -- References -- Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact of the Transformer -- Early approaches in NLP -- Advent of neural language models -- Distributed representations -- Transfer Learning -- Advent of NNs in NLP -- The emergence of the Transformer in advanced language models -- Components of the transformer architecture -- Sequence-to-sequence learning.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shaikh, Samira</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781835460825</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781835460825</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:EBC</subfield><subfield code="u">https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31516396</subfield><subfield code="x">Aggregator</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035169280</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hm-bib/detail.action?docID=31516396</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049829298 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T20:23:04Z |
institution | BVB |
isbn | 9781835464915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035169280 |
oclc_num | 1454750207 |
open_access_boolean | |
owner | DE-M347 |
owner_facet | DE-M347 |
physical | 1 online resource (190 pages) |
psigel | ZDB-30-PQE ZDB-30-PQE FHM_Einzelkauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing, Limited |
record_format | marc |
spelling | Rodriguez, Carlos Verfasser aut Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs 1st ed. Birmingham Packt Publishing, Limited 2024 1 online resource (190 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Title Page -- Copyright and Credits -- Dedications -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Foundations of Generative AI and the Evolution of Large Language Models -- Chapter 1: Understanding Generative AI: An Introduction -- Generative AI -- Distinguishing generative AI from other AI models -- Briefly surveying generative approaches -- Clarifying misconceptions between discriminative and generative paradigms -- Choosing the right paradigm -- Looking back at the evolution of generative AI -- Overview of traditional methods in NLP -- Arrival and evolution of transformer-based models -- Development and impact of GPT-4 -- Looking ahead at risks and implications -- Introducing use cases of generative AI -- The future of generative AI applications -- Summary -- References -- Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers -- Understanding General Artificial Intelligence (GAI) Types - distinguishing features of GANs, diffusers, and transformers -- Deconstructing GAI methods - exploring GANs, diffusers, and transformers -- A closer look at GANs -- A closer look at diffusion models -- A closer look at generative transformers -- Applying GAI models - image generation using GANs, diffusers, and transformers -- Working with Jupyter Notebook and Google Colab -- Stable diffusion transformer -- Scoring with the CLIP model -- Summary -- References -- Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact of the Transformer -- Early approaches in NLP -- Advent of neural language models -- Distributed representations -- Transfer Learning -- Advent of NNs in NLP -- The emergence of the Transformer in advanced language models -- Components of the transformer architecture -- Sequence-to-sequence learning. Shaikh, Samira ctb 9781835460825 Erscheint auch als Druck-Ausgabe 9781835460825 X:EBC https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31516396 Aggregator |
spellingShingle | Rodriguez, Carlos Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_auth | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_exact_search | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_full | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_fullStr | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_full_unstemmed | Generative AI Foundations in Python Discover Key Techniques and Navigate Modern Challenges in LLMs |
title_short | Generative AI Foundations in Python |
title_sort | generative ai foundations in python discover key techniques and navigate modern challenges in llms |
title_sub | Discover Key Techniques and Navigate Modern Challenges in LLMs |
url | https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=31516396 |
work_keys_str_mv | AT rodriguezcarlos generativeaifoundationsinpythondiscoverkeytechniquesandnavigatemodernchallengesinllms AT shaikhsamira generativeaifoundationsinpythondiscoverkeytechniquesandnavigatemodernchallengesinllms |