Deep learning for medical image analysis:
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutio...
Gespeichert in:
Weitere beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
London, United Kingdom
Academic Press, Elsevier
[2024]
|
Ausgabe: | Second edition |
Schriftenreihe: | The Elsevier and Miccai Society book series
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034740696&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Zusammenfassung: | Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis |
Beschreibung: | 1. An Introduction to Neural Networks and Deep Learning; 2. Deep reinforcement learning in medical imaging; 3. CapsNet for medical image segmentation; 4.Transformer for Medical Image Analysis; 5. An overview of disentangled representation learning for MR images; 6. Hypergraph Learning and Its Applications for Medical Image Analysis; 7. Unsupervised Domain Adaptation for Medical Image Analysis; 8. Medical image synthesis and reconstruction using generative adversarial networks; 9. Deep Learning for Medical Image Reconstruction; 10. Dynamic inference using neural architecture search in medical image segmentation; 11. Multi-modality cardiac image analysis with deep learning; 12. Deep Learning-based Medical Image Registration; 13. Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI; 14. Deep Learning in Functional Brain Mapping and associated applications; 15. Detecting, Localising, and Classifying Polyps from Colonoscopy Videos Using Deep Learning; 16. OCTA Segmentation with limited training data using disentangled represenatation learning; 17. Considerations in the Assessment of Machine Learning Algorithm Performance for Medical Imaging |
Umfang: | xxiii, 518 Seiten Illustrationen, Diagramme 235 mm |
ISBN: | 9780323851244 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049413691 | ||
003 | DE-604 | ||
005 | 20240628 | ||
007 | t| | ||
008 | 231115s2024 xx a||| |||| 00||| eng d | ||
020 | |a 9780323851244 |c pbk |9 978-0-323-85124-4 | ||
024 | 3 | |a 9780323851244 | |
035 | |a (OCoLC)1418690861 | ||
035 | |a (DE-599)BVBBV049413691 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-739 | ||
084 | |a ST 640 |0 (DE-625)143686: |2 rvk | ||
245 | 1 | 0 | |a Deep learning for medical image analysis |c edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen |
250 | |a Second edition | ||
264 | 1 | |a London, United Kingdom |b Academic Press, Elsevier |c [2024] | |
300 | |a xxiii, 518 Seiten |b Illustrationen, Diagramme |c 235 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Elsevier and Miccai Society book series | |
500 | |a 1. An Introduction to Neural Networks and Deep Learning; 2. Deep reinforcement learning in medical imaging; 3. CapsNet for medical image segmentation; 4.Transformer for Medical Image Analysis; 5. An overview of disentangled representation learning for MR images; 6. Hypergraph Learning and Its Applications for Medical Image Analysis; 7. Unsupervised Domain Adaptation for Medical Image Analysis; 8. Medical image synthesis and reconstruction using generative adversarial networks; 9. Deep Learning for Medical Image Reconstruction; 10. Dynamic inference using neural architecture search in medical image segmentation; 11. Multi-modality cardiac image analysis with deep learning; 12. Deep Learning-based Medical Image Registration; 13. Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI; 14. Deep Learning in Functional Brain Mapping and associated applications; 15. Detecting, Localising, and Classifying Polyps from Colonoscopy Videos Using Deep Learning; 16. OCTA Segmentation with limited training data using disentangled represenatation learning; 17. Considerations in the Assessment of Machine Learning Algorithm Performance for Medical Imaging | ||
520 | |a Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis | ||
650 | 0 | 7 | |a Bildanalyse |0 (DE-588)4145391-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cloud Computing |0 (DE-588)7623494-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klein- und Mittelbetrieb |0 (DE-588)4031031-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Cloud Computing |0 (DE-588)7623494-0 |D s |
689 | 0 | 1 | |a Klein- und Mittelbetrieb |0 (DE-588)4031031-0 |D s |
689 | 0 | 2 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | 3 | |a Bildanalyse |0 (DE-588)4145391-8 |D s |
689 | 0 | 4 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhou, S. Kevin |d ca. 20./21. Jh. |0 (DE-588)1334324565 |4 edt | |
700 | 1 | |a Greenspan, Hayit |d ca. 20./21. Jh. |0 (DE-588)1334324883 |4 edt | |
700 | 1 | |a Shen, Dinggang |0 (DE-588)1131560000 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034740696&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034740696 |
Datensatz im Suchindex
_version_ | 1818991509220884480 |
---|---|
any_adam_object | 1 |
author2 | Zhou, S. Kevin ca. 20./21. Jh Greenspan, Hayit ca. 20./21. Jh Shen, Dinggang |
author2_role | edt edt edt |
author2_variant | s k z sk skz h g hg d s ds |
author_GND | (DE-588)1334324565 (DE-588)1334324883 (DE-588)1131560000 |
author_facet | Zhou, S. Kevin ca. 20./21. Jh Greenspan, Hayit ca. 20./21. Jh Shen, Dinggang |
building | Verbundindex |
bvnumber | BV049413691 |
classification_rvk | ST 640 |
ctrlnum | (OCoLC)1418690861 (DE-599)BVBBV049413691 |
discipline | Informatik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04063nam a2200505 c 4500</leader><controlfield tag="001">BV049413691</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240628 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">231115s2024 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323851244</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-323-85124-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780323851244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418690861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049413691</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 640</subfield><subfield code="0">(DE-625)143686:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning for medical image analysis</subfield><subfield code="c">edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, United Kingdom</subfield><subfield code="b">Academic Press, Elsevier</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 518 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">235 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Elsevier and Miccai Society book series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. An Introduction to Neural Networks and Deep Learning; 2. Deep reinforcement learning in medical imaging; 3. CapsNet for medical image segmentation; 4.Transformer for Medical Image Analysis; 5. An overview of disentangled representation learning for MR images; 6. Hypergraph Learning and Its Applications for Medical Image Analysis; 7. Unsupervised Domain Adaptation for Medical Image Analysis; 8. Medical image synthesis and reconstruction using generative adversarial networks; 9. Deep Learning for Medical Image Reconstruction; 10. Dynamic inference using neural architecture search in medical image segmentation; 11. Multi-modality cardiac image analysis with deep learning; 12. Deep Learning-based Medical Image Registration; 13. Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI; 14. Deep Learning in Functional Brain Mapping and associated applications; 15. Detecting, Localising, and Classifying Polyps from Colonoscopy Videos Using Deep Learning; 16. OCTA Segmentation with limited training data using disentangled represenatation learning; 17. Considerations in the Assessment of Machine Learning Algorithm Performance for Medical Imaging</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cloud Computing</subfield><subfield code="0">(DE-588)7623494-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klein- und Mittelbetrieb</subfield><subfield code="0">(DE-588)4031031-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cloud Computing</subfield><subfield code="0">(DE-588)7623494-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klein- und Mittelbetrieb</subfield><subfield code="0">(DE-588)4031031-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, S. Kevin</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1334324565</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greenspan, Hayit</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1334324883</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Dinggang</subfield><subfield code="0">(DE-588)1131560000</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034740696&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034740696</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV049413691 |
illustrated | Illustrated |
indexdate | 2024-12-20T20:11:24Z |
institution | BVB |
isbn | 9780323851244 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034740696 |
oclc_num | 1418690861 |
open_access_boolean | |
owner | DE-29T DE-739 |
owner_facet | DE-29T DE-739 |
physical | xxiii, 518 Seiten Illustrationen, Diagramme 235 mm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Academic Press, Elsevier |
record_format | marc |
series2 | The Elsevier and Miccai Society book series |
spelling | Deep learning for medical image analysis edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen Second edition London, United Kingdom Academic Press, Elsevier [2024] xxiii, 518 Seiten Illustrationen, Diagramme 235 mm txt rdacontent n rdamedia nc rdacarrier The Elsevier and Miccai Society book series 1. An Introduction to Neural Networks and Deep Learning; 2. Deep reinforcement learning in medical imaging; 3. CapsNet for medical image segmentation; 4.Transformer for Medical Image Analysis; 5. An overview of disentangled representation learning for MR images; 6. Hypergraph Learning and Its Applications for Medical Image Analysis; 7. Unsupervised Domain Adaptation for Medical Image Analysis; 8. Medical image synthesis and reconstruction using generative adversarial networks; 9. Deep Learning for Medical Image Reconstruction; 10. Dynamic inference using neural architecture search in medical image segmentation; 11. Multi-modality cardiac image analysis with deep learning; 12. Deep Learning-based Medical Image Registration; 13. Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI; 14. Deep Learning in Functional Brain Mapping and associated applications; 15. Detecting, Localising, and Classifying Polyps from Colonoscopy Videos Using Deep Learning; 16. OCTA Segmentation with limited training data using disentangled represenatation learning; 17. Considerations in the Assessment of Machine Learning Algorithm Performance for Medical Imaging Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis Bildanalyse (DE-588)4145391-8 gnd rswk-swf Cloud Computing (DE-588)7623494-0 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Klein- und Mittelbetrieb (DE-588)4031031-0 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Cloud Computing (DE-588)7623494-0 s Klein- und Mittelbetrieb (DE-588)4031031-0 s Bildgebendes Verfahren (DE-588)4006617-4 s Bildanalyse (DE-588)4145391-8 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Zhou, S. Kevin ca. 20./21. Jh. (DE-588)1334324565 edt Greenspan, Hayit ca. 20./21. Jh. (DE-588)1334324883 edt Shen, Dinggang (DE-588)1131560000 edt Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034740696&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deep learning for medical image analysis Bildanalyse (DE-588)4145391-8 gnd Cloud Computing (DE-588)7623494-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Klein- und Mittelbetrieb (DE-588)4031031-0 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
subject_GND | (DE-588)4145391-8 (DE-588)7623494-0 (DE-588)4193754-5 (DE-588)4031031-0 (DE-588)4006617-4 (DE-588)4143413-4 |
title | Deep learning for medical image analysis |
title_auth | Deep learning for medical image analysis |
title_exact_search | Deep learning for medical image analysis |
title_full | Deep learning for medical image analysis edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen |
title_fullStr | Deep learning for medical image analysis edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen |
title_full_unstemmed | Deep learning for medical image analysis edited by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen |
title_short | Deep learning for medical image analysis |
title_sort | deep learning for medical image analysis |
topic | Bildanalyse (DE-588)4145391-8 gnd Cloud Computing (DE-588)7623494-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Klein- und Mittelbetrieb (DE-588)4031031-0 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
topic_facet | Bildanalyse Cloud Computing Maschinelles Lernen Klein- und Mittelbetrieb Bildgebendes Verfahren Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034740696&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhouskevin deeplearningformedicalimageanalysis AT greenspanhayit deeplearningformedicalimageanalysis AT shendinggang deeplearningformedicalimageanalysis |