Large-scale convex optimization: algorithms & analyses via monotone operators
Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/9781009160865 https://doi.org/10.1017/9781009160865 https://doi.org/10.1017/9781009160865 https://doi.org/10.1017/9781009160865 |
Zusammenfassung: | Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms |
Beschreibung: | Title from publisher's bibliographic system (viewed on 12 Dec 2022) |
Umfang: | 1 Online-Ressource (xiv, 303 Seiten) |
ISBN: | 9781009160865 |
DOI: | 10.1017/9781009160865 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048691888 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230203s2022 xx o|||| 00||| eng d | ||
020 | |a 9781009160865 |c Online |9 978-1-00-916086-5 | ||
024 | 7 | |a 10.1017/9781009160865 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009160865 | ||
035 | |a (OCoLC)1369555369 | ||
035 | |a (DE-599)BVBBV048691888 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 516.08 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Ryu, Ernest K. |d ca. 20./21. Jh. |0 (DE-588)1280001011 |4 aut | |
245 | 1 | 0 | |a Large-scale convex optimization |b algorithms & analyses via monotone operators |c Ernest K. Ryu, Wotao Yin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xiv, 303 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 12 Dec 2022) | ||
520 | |a Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms | ||
650 | 4 | |a Convex sets | |
650 | 4 | |a Convex functions | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monotoner Operator |0 (DE-588)4207161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Funktion |0 (DE-588)4139679-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | 1 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 0 | 2 | |a Konvexe Funktion |0 (DE-588)4139679-0 |D s |
689 | 0 | 3 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 4 | |a Monotoner Operator |0 (DE-588)4207161-6 |D s |
689 | 0 | 5 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yin, Wotao |d ca. 20./21. Jh. |0 (DE-588)103849625X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-916085-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009160865 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034066087 | |
966 | e | |u https://doi.org/10.1017/9781009160865 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009160865 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009160865 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818990303112069120 |
---|---|
any_adam_object | |
author | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh |
author_GND | (DE-588)1280001011 (DE-588)103849625X |
author_facet | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh |
author_role | aut aut |
author_sort | Ryu, Ernest K. ca. 20./21. Jh |
author_variant | e k r ek ekr w y wy |
building | Verbundindex |
bvnumber | BV048691888 |
classification_rvk | SK 870 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009160865 (OCoLC)1369555369 (DE-599)BVBBV048691888 |
dewey-full | 516.08 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.08 |
dewey-search | 516.08 |
dewey-sort | 3516.08 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781009160865 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03524nam a2200601zc 4500</leader><controlfield tag="001">BV048691888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230203s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009160865</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-916086-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009160865</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009160865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369555369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048691888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.08</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryu, Ernest K.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1280001011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Large-scale convex optimization</subfield><subfield code="b">algorithms & analyses via monotone operators</subfield><subfield code="c">Ernest K. Ryu, Wotao Yin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 303 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 12 Dec 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monotoner Operator</subfield><subfield code="0">(DE-588)4207161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Monotoner Operator</subfield><subfield code="0">(DE-588)4207161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Wotao</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)103849625X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-916085-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009160865</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034066087</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009160865</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009160865</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009160865</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048691888 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:52:13Z |
institution | BVB |
isbn | 9781009160865 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034066087 |
oclc_num | 1369555369 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (xiv, 303 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ryu, Ernest K. ca. 20./21. Jh. (DE-588)1280001011 aut Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu, Wotao Yin Cambridge Cambridge University Press 2023 1 Online-Ressource (xiv, 303 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 12 Dec 2022) Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods - including parallel-distributed algorithms - through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms Convex sets Convex functions Mathematical optimization Modellierung (DE-588)4170297-9 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Konvexe Menge (DE-588)4165212-5 gnd rswk-swf Monotoner Operator (DE-588)4207161-6 gnd rswk-swf Konvexe Funktion (DE-588)4139679-0 gnd rswk-swf Modellierung (DE-588)4170297-9 s Konvexe Menge (DE-588)4165212-5 s Konvexe Funktion (DE-588)4139679-0 s Optimierung (DE-588)4043664-0 s Monotoner Operator (DE-588)4207161-6 s Operatortheorie (DE-588)4075665-8 s DE-604 Yin, Wotao ca. 20./21. Jh. (DE-588)103849625X aut Erscheint auch als Druck-Ausgabe 978-1-00-916085-8 https://doi.org/10.1017/9781009160865 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh Large-scale convex optimization algorithms & analyses via monotone operators Convex sets Convex functions Mathematical optimization Modellierung (DE-588)4170297-9 gnd Operatortheorie (DE-588)4075665-8 gnd Optimierung (DE-588)4043664-0 gnd Konvexe Menge (DE-588)4165212-5 gnd Monotoner Operator (DE-588)4207161-6 gnd Konvexe Funktion (DE-588)4139679-0 gnd |
subject_GND | (DE-588)4170297-9 (DE-588)4075665-8 (DE-588)4043664-0 (DE-588)4165212-5 (DE-588)4207161-6 (DE-588)4139679-0 |
title | Large-scale convex optimization algorithms & analyses via monotone operators |
title_auth | Large-scale convex optimization algorithms & analyses via monotone operators |
title_exact_search | Large-scale convex optimization algorithms & analyses via monotone operators |
title_full | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu, Wotao Yin |
title_fullStr | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu, Wotao Yin |
title_full_unstemmed | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu, Wotao Yin |
title_short | Large-scale convex optimization |
title_sort | large scale convex optimization algorithms analyses via monotone operators |
title_sub | algorithms & analyses via monotone operators |
topic | Convex sets Convex functions Mathematical optimization Modellierung (DE-588)4170297-9 gnd Operatortheorie (DE-588)4075665-8 gnd Optimierung (DE-588)4043664-0 gnd Konvexe Menge (DE-588)4165212-5 gnd Monotoner Operator (DE-588)4207161-6 gnd Konvexe Funktion (DE-588)4139679-0 gnd |
topic_facet | Convex sets Convex functions Mathematical optimization Modellierung Operatortheorie Optimierung Konvexe Menge Monotoner Operator Konvexe Funktion |
url | https://doi.org/10.1017/9781009160865 |
work_keys_str_mv | AT ryuernestk largescaleconvexoptimizationalgorithmsanalysesviamonotoneoperators AT yinwotao largescaleconvexoptimizationalgorithmsanalysesviamonotoneoperators |