Machine learning with PyTorch and Scikit-Learn: develop machine learning and deep learning models with Python
Gespeichert in:
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048382419 | ||
003 | DE-604 | ||
005 | 20250211 | ||
007 | cr|uuu---uuuuu | ||
008 | 220729s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9781801816380 |9 978-1-80181-638-0 | ||
035 | |a (ZDB-30-PQE)EBC6870905 | ||
035 | |a (OCoLC)1339081668 | ||
035 | |a (DE-599)BVBBV048382419 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-355 |a DE-860 |a DE-706 |a DE-Aug4 |a DE-83 |a DE-91 |a DE-M347 |a DE-1050 |a DE-573 |a DE-11 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Raschka, Sebastian |e Verfasser |0 (DE-588)1080537872 |4 aut | |
245 | 1 | 0 | |a Machine learning with PyTorch and Scikit-Learn |b develop machine learning and deep learning models with Python |c Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili |
264 | 1 | |a Birmingham ; Mumbai |b Packt |c [February 2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxviii, 741 Seiten) |b Illustrationen (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Expert insight | |
500 | |a Auf dem Cover: "PyTorch book of the bestselling and widley acclaiming Python machine learning series" | ||
650 | 0 | 7 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a TensorFlow |0 (DE-588)1153577011 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cluster-Analyse |0 (DE-588)4070044-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python 3.6 |0 (DE-588)113674746X |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 3 | |a Python 3.6 |0 (DE-588)113674746X |D s |
689 | 0 | 4 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 5 | |a TensorFlow |0 (DE-588)1153577011 |D s |
689 | 0 | 6 | |a Keras |g Framework, Informatik |0 (DE-588)1160521077 |D s |
689 | 0 | 7 | |a Cluster-Analyse |0 (DE-588)4070044-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Liu, Yuxi |e Verfasser |0 (DE-588)1144655390 |4 aut | |
700 | 1 | |a Mirjalili, Vahid |e Verfasser |0 (DE-588)1147615993 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80181-931-2 |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-4-NLEBK | ||
912 | |a ZDB-221-PDA | ||
912 | |a ZDB-221-PPK | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033761239 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-Aug4 |p ZDB-221-PPK |q FHA_PDA_PPK_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6870905 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-573 |p ZDB-221-PDA |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-M347 |p ZDB-221-PDA |q FHM_PDA_PDA_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-860 |p ZDB-221-PDA |q FLA_PDA_PDA_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-91 |p ZDB-221-PPK |q TUM_PDA_PPK_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6870905 |l DE-355 |p ZDB-30-PQE |q UBR Sammelbestellung 2022 |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006147.html |l DE-706 |p ZDB-221-PDA |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6870905 |l DE-29 |p ZDB-30-PQE |q UER_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2767704 |
---|---|
_version_ | 1823807853134086145 |
adam_text | |
any_adam_object | |
author | Raschka, Sebastian Liu, Yuxi Mirjalili, Vahid |
author_GND | (DE-588)1080537872 (DE-588)1144655390 (DE-588)1147615993 |
author_facet | Raschka, Sebastian Liu, Yuxi Mirjalili, Vahid |
author_role | aut aut aut |
author_sort | Raschka, Sebastian |
author_variant | s r sr y l yl v m vm |
building | Verbundindex |
bvnumber | BV048382419 |
classification_rvk | ST 250 ST 300 ST 302 |
collection | ZDB-30-PQE ZDB-4-NLEBK ZDB-221-PDA ZDB-221-PPK |
ctrlnum | (ZDB-30-PQE)EBC6870905 (OCoLC)1339081668 (DE-599)BVBBV048382419 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048382419</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250211</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220729s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781801816380</subfield><subfield code="9">978-1-80181-638-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6870905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339081668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048382419</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raschka, Sebastian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1080537872</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with PyTorch and Scikit-Learn</subfield><subfield code="b">develop machine learning and deep learning models with Python</subfield><subfield code="c">Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">[February 2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxviii, 741 Seiten)</subfield><subfield code="b">Illustrationen (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expert insight</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf dem Cover: "PyTorch book of the bestselling and widley acclaiming Python machine learning series"</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python 3.6</subfield><subfield code="0">(DE-588)113674746X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python 3.6</subfield><subfield code="0">(DE-588)113674746X</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Keras</subfield><subfield code="g">Framework, Informatik</subfield><subfield code="0">(DE-588)1160521077</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuxi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1144655390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirjalili, Vahid</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1147615993</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80181-931-2</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PPK</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033761239</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PPK</subfield><subfield code="q">FHA_PDA_PPK_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6870905</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FHM_PDA_PDA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FLA_PDA_PDA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PPK</subfield><subfield code="q">TUM_PDA_PPK_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=6870905</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2022</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006147.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=6870905</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048382419 |
illustrated | Illustrated |
indexdate | 2025-02-11T15:01:16Z |
institution | BVB |
isbn | 9781801816380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033761239 |
oclc_num | 1339081668 |
open_access_boolean | |
owner | DE-29 DE-355 DE-BY-UBR DE-860 DE-706 DE-Aug4 DE-83 DE-91 DE-BY-TUM DE-M347 DE-1050 DE-573 DE-11 |
owner_facet | DE-29 DE-355 DE-BY-UBR DE-860 DE-706 DE-Aug4 DE-83 DE-91 DE-BY-TUM DE-M347 DE-1050 DE-573 DE-11 |
physical | 1 Online-Ressource (xxviii, 741 Seiten) Illustrationen (teilweise farbig) |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-221-PDA ZDB-221-PPK ZDB-221-PPK FHA_PDA_PPK_Kauf ZDB-30-PQE FHD01_PQE_Kauf ZDB-221-PDA FHM_PDA_PDA_Kauf ZDB-221-PDA FLA_PDA_PDA_Kauf ZDB-221-PPK TUM_PDA_PPK_Kauf ZDB-30-PQE UBR Sammelbestellung 2022 ZDB-30-PQE UER_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Packt |
record_format | marc |
series2 | Expert insight |
spellingShingle | Raschka, Sebastian Liu, Yuxi Mirjalili, Vahid Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python Keras Framework, Informatik (DE-588)1160521077 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd TensorFlow (DE-588)1153577011 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Cluster-Analyse (DE-588)4070044-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Python 3.6 (DE-588)113674746X gnd |
subject_GND | (DE-588)1160521077 (DE-588)4802620-7 (DE-588)4123037-1 (DE-588)1153577011 (DE-588)4193754-5 (DE-588)4070044-6 (DE-588)4434275-5 (DE-588)113674746X |
title | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python |
title_auth | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python |
title_exact_search | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python |
title_full | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili |
title_fullStr | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili |
title_full_unstemmed | Machine learning with PyTorch and Scikit-Learn develop machine learning and deep learning models with Python Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili |
title_short | Machine learning with PyTorch and Scikit-Learn |
title_sort | machine learning with pytorch and scikit learn develop machine learning and deep learning models with python |
title_sub | develop machine learning and deep learning models with Python |
topic | Keras Framework, Informatik (DE-588)1160521077 gnd Big Data (DE-588)4802620-7 gnd Datenanalyse (DE-588)4123037-1 gnd TensorFlow (DE-588)1153577011 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Cluster-Analyse (DE-588)4070044-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Python 3.6 (DE-588)113674746X gnd |
topic_facet | Keras Framework, Informatik Big Data Datenanalyse TensorFlow Maschinelles Lernen Cluster-Analyse Python Programmiersprache Python 3.6 |
work_keys_str_mv | AT raschkasebastian machinelearningwithpytorchandscikitlearndevelopmachinelearninganddeeplearningmodelswithpython AT liuyuxi machinelearningwithpytorchandscikitlearndevelopmachinelearninganddeeplearningmodelswithpython AT mirjalilivahid machinelearningwithpytorchandscikitlearndevelopmachinelearninganddeeplearningmodelswithpython |