Sandwich composites: fabrication and characterization
Gespeichert in:
Weitere beteiligte Personen: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Schlagwörter: | |
Links: | https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6825657 https://doi.org/10.1201/9781003143031 https://doi.org/10.1201/9781003143031 |
Umfang: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9781000531701 9781003143031 |
DOI: | 10.1201/9781003143031 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221469 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9781000531701 |9 978-1-00-053170-1 | ||
020 | |a 9781003143031 |9 978-1-003-14303-1 | ||
024 | 7 | |a 10.1201/9781003143031 |2 doi | |
035 | |a (ZDB-30-PQE)EBC6825657 | ||
035 | |a (ZDB-30-PAD)EBC6825657 | ||
035 | |a (ZDB-89-EBL)EBL6825657 | ||
035 | |a (ZDB-7-TFC)9781003143031 | ||
035 | |a (OCoLC)1289370095 | ||
035 | |a (DE-599)BVBBV048221469 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-706 | ||
082 | 0 | |a 620.1/18 | |
084 | |a ZM 7020 |0 (DE-625)157098: |2 rvk | ||
084 | |a ZM 7029 |0 (DE-625)157104: |2 rvk | ||
084 | |a WER 420 |2 stub | ||
245 | 1 | 0 | |a Sandwich composites |b fabrication and characterization |c edited by Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1 Introduction to Sandwich Composite Panels and Their Fabrication Methods -- 1.1 What Are Sandwich Composite Structures? -- 1.2 Brief History of Sandwich Composite Structures -- 1.3 Common Materials Used in Composite Sandwich Structures and Their Properties -- 1.3.1 Face Materials -- 1.3.2 Core Materials -- 1.3.2.1 Foams or Solid Cores -- 1.3.2.2 Corrugated or Truss Cores -- 1.3.2.3 Honeycomb Structures -- 1.3.3 Adhesive Materials -- 1.3.3.1 Epoxy Resins and Toughened Epoxies -- 1.3.3.2 Phenolics -- 1.3.3.3 Polyurethanes -- 1.3.3.4 Urethane Acrylates -- 1.3.3.5 Polyester and Vinyl Ester Resins -- 1.4 Fabrication Methods for Composite Sandwich Laminates -- 1.4.1 Hand Layup Process -- 1.4.2 Compression Moulding Process -- 1.4.3 Filament Winding Process -- 1.4.4 Vacuum Bagging and Autoclave Moulding Process -- 1.4.5 Pultrusion Process -- 1.4.6 Resin Transfer Moulding (RTM) -- 1.4.7 Additive Manufacturing Processes -- 1.5 Conclusions -- References -- Chapter 2 Corrugated Core- and Fold Core-Based Sandwich Panels -- 2.1 Introduction -- 2.2 Designs and Structures -- 2.2.1 Corrugated Cores -- 2.2.2 Fold Cores -- 2.3 Materials -- 2.3.1 Corrugated Cores -- 2.3.2 Fold Cores -- 2.4 Mechanical Properties -- 2.4.1 Corrugated Cores -- 2.4.2 Fold Cores -- 2.5 Manufacturing Methods -- 2.5.1 Corrugated Cores -- 2.5.2 Fold Cores -- 2.6 Applications -- 2.6.1 Corrugated Cores -- 2.6.2 Fold Cores -- 2.7 Conclusions -- References -- Chapter 3 Metallic Core- and Truss Core-Based Composite Sandwich Panels -- 3.1 Introduction -- 3.2 Fabrication Approach and Performance Characterization of Metallic Core-Based Composite Sandwich Panels -- 3.3 Fabrication Approach and Performance Characterization of Truss Core-Based Composite Sandwich Panels | |
505 | 8 | |a References -- Chapter 4 Composite Sandwich Panels with the Metallic Facesheets -- 4.1 Introduction -- 4.2 Classification of FMLs -- 4.3 Composite Sandwich Laminates -- 4.4 Adhesive Bonding of Metal-Composite Interface -- 4.5 The Manufacturing Process of FMLs -- 4.6 Conclusions -- References -- Chapter 5 Failure Behavior and Residual Strength of the Composite Sandwich Panels Subjected to Compression after Impact Testing -- 5.1 Introduction -- 5.2 CAI Test Methods and Standards -- 5.3 Experimental Investigations on CAI for Sandwich Composite Panels -- 5.3.1 Non-Crimp Fabric (NCF) Sandwich Panels -- 5.3.2 CAI Behavior of Thin Laminates -- 5.3.3 CAI: Issue of Core Crushing Damage -- 5.3.4 CAI by Column Compression -- 5.3.5 CAI of Honeycomb Core Structures -- 5.3.6 CAI: Issue of Low Temperature -- 5.3.7 CAI Issue in Expendable Launch Vehicles -- 5.3.8 CAI after Full-Scale Blast Experiments -- 5.3.9 Influence of Skin Thickness Increment on CAI -- 5.3.10 Influence of Core Density Increment on CAI -- 5.3.11 Reinforcement Effect on CAI -- 5.3.12 Issue of Hybrid Face Sheet Effect on CAI -- 5.3.13 Thickness and Ply-Stacking Sequence Effect on CAI -- 5.3.14 Shape-Memory Alloy (SMA)-GFRP Hybrid Face Sheets and CAI Behavior -- 5.4 Numerical Studies on Failure of Composite Sandwich Panels for Compression after Impact Loading -- 5.4.1 Damage Zone Modeled as Equivalent Hole -- 5.4.2 Modeling of Intralaminar and Interlaminar Damages -- 5.4.2.1 Continuum Damage Model (CDM) -- 5.4.2.2 Interlaminar Damage (Delamination) Modeling for Composites -- 5.4.2.3 Modeling of Matrix Cracking and Interface Delamination through Cohesive Elements -- 5.5 State-of-the-Art Numerical Models Available in the Literature to Study Intralaminar Failure and Delamination of Sandwich Composites -- 5.5.1 Composite Panels and Laminates -- 5.5.2 Foam Core Sandwich Panel under CAI. | |
505 | 8 | |a 5.5.3 CAI Test Model of Damaged Woven Fabric Sandwich Composite -- 5.5.4 Stitched Composite under CAI -- 5.5.5 Three-Dimensional Parametric Study for Impact Behavior of Honeycomb Sandwich Structure -- 5.6 Single FE Model for Impact Damage and CAI -- 5.7 Conclusions -- References -- Chapter 6 Low-Velocity Impact Response of the Composite Sandwich Panels -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 Results and Discussion -- 6.3.1 Effect of Density of Core on Structural Response -- 6.3.2 Force and Energy Response -- 6.3.3 Damage Analysis -- 6.3.4 Taguchi Analysis -- 6.4 Conclusions -- Acknowledgment -- References -- Chapter 7 High-Velocity Impact Properties of the Composite Sandwich Panels -- 7.1 Introduction -- 7.2 High-Velocity Impact Properties of Sandwich Panels -- 7.2.1 Polymeric Core Sandwich Panels -- 7.2.2 Metallic Core Sandwich Panels -- 7.2.3 Bio-based Core Sandwich Panels -- 7.2.4 Hybrid Core Sandwich Panels -- 7.2.5 New Advanced Sandwich Panels -- 7.2.6 Comparative Study -- 7.3 Conclusions -- References -- Chapter 8 Investigation of Blast Loading Response of the Composite Sandwich Panels -- 8.1 Introduction -- 8.2 Theoretical and Geometrical Development -- 8.3 Boundary Conditions -- 8.4 Blast Load -- 8.5 Simulation Modeling -- 8.6 Results and Discussion -- 8.7 Concluding Remarks -- References -- Chapter 9 Flexural Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 9.1 Introduction -- 9.2 Development and Performance Characterization of GFRP Connectors -- 9.2.1 Details of the Proposed Connectors -- 9.2.2 Test Specimens -- 9.2.3 Test Results -- 9.3 Structural Performance of RC One-Way Slabs with Geopolymer Concrete -- 9.3.1 Test Specimens -- 9.3.2 Test Results -- 9.3.3 Comparison with the Code of Practice and Guidelines | |
505 | 8 | |a 9.4 Flexural Performance of the Sandwich Panel with Geopolymer Concrete -- 9.4.1 Test Specimens -- 9.4.2 Test Results -- 9.4.3 Degree of Composite Action -- 9.4.4 Simplified Approach for Stiffness Prediction of the PCSWP -- 9.5 Fire and Post-Fire Residual Performance of the Sandwich Panel with Geopolymer Concrete -- 9.5.1 Test Specimens -- 9.5.2 Test Procedure -- 9.5.3 Test Results -- 9.6 Conclusions -- References -- Chapter 10 Axial Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 10.1 Introduction -- 10.2 Materials -- 10.2.1 Geopolymer Concrete -- 10.2.2 BFRP Bar/Grid -- 10.2.3 GFRP Tubular Connectors -- 10.2.4 Insulation -- 10.3 Axial Compression Behavior - Experimental Investigation -- 10.4 Eccentric Compression Behavior - Experimental Investigation -- 10.5 Role of Connectors -- 10.6 Simplified Theoretical Investigation -- 10.6.1 SWPs Subjected to Eccentric Axial Load -- 10.7 Prediction of Load Capacity from the Existing Empirical Design Formulae -- 10.8 Concluding Remarks -- References -- Chapter 11 Enhanced Failure Behavior for Sandwiches with Hybrid Wire Mesh/FRP Face Sheets -- 11.1 Introduction -- 11.2 Significance of Wire Mesh Sheets for Hybrid Composites -- 11.3 Hybridization of Fiber/Polymer Matrix Face Sheets with Stainless Steel Wire Mesh Sheets -- 11.4 Evaluation of the Flexural Characteristics of the Developed Sandwiches with Carbon/Epoxy/Wire Mesh Face Sheets -- 11.4.1 Load-Deflection Curves -- 11.4.2 Load-Carrying Capacities -- 11.5 Examination of Failure Behaviors -- 11.6 Conclusions -- References -- Chapter 12 Low-Velocity Impact Behaviour of Textile-Reinforced Composite Sandwich Panels -- 12.1 Introduction -- 12.1.1 Mechanics of Impact -- 12.2 Concept of Low-Velocity Impact -- 12.3 Importance of Impact in Composites -- 12.4 Manufacturing of Sandwich Composites | |
505 | 8 | |a 12.4.1 Face Material -- 12.4.1.1 Manufacturing of Face Sheet -- 12.4.2 Core Material -- 12.4.2.1 Balsa Wood -- 12.4.2.2 Metallic -- 12.4.2.3 Polymeric -- 12.4.3 Honeycomb -- 12.4.3.1 3D Woven Honeycomb Structures -- 12.4.3.2 3D Woven Hollow Spacer Structures -- 12.4.3.3 Fold Cores -- 12.4.3.4 Truss -- 12.4.3.5 Integrated Woven Cores -- 12.4.3.6 Manufacturing of Core -- 12.4.4 Manufacturing of Sandwich Panel -- 12.4.4.1 Skin-Core Joining Methods -- 12.4.5 Different Core Orientations in Sandwich Panel -- 12.5 Characterization of Composite Sandwich Panel -- 12.5.1 In-Plane Tensile Properties -- 12.5.2 Flatwise Tensile Strength of Sandwich Panels -- 12.5.3 Edgewise Compressive Strength of Sandwich Panels -- 12.5.4 Flatwise Compressive Properties of Cores in a Sandwich Panel -- 12.5.5 Standard Test Method for Core Shear Properties of Sandwich Panel -- 12.5.6 Different Impact Tests -- 12.6 Impact Damage -- 12.6.1 Causes of Impact Damage -- 12.6.2 Mechanism of Impact Damage -- 12.6.3 Energy Absorption during Impact -- 12.7 Factors Affecting Impact in Composite Sandwich Panels -- 12.7.1 Effect of Impactor -- 12.7.2 Effect of the Target Structure -- 12.7.3 External Factors -- 12.8 Modes of Failure and Failure Load in Low-Velocity Impact -- 12.9 Structure and Properties of Textile Structure-Based Composite Sandwich Panels -- 12.9.1 Using Metal Face Sheets with Textile-Based Core -- 12.9.2 Auxetic Structure -- 12.9.3 Integrated Structure -- 12.9.4 Dual-Core-Based Structure -- 12.9.5 Incorporation of Nano-Structures -- 12.10 Modelling -- 12.10.1 Analytical Modelling -- 12.10.2 Numerical Modelling -- 12.11 Applications -- 12.11.1 Civil Infrastructure -- 12.11.2 Marine Structures -- 12.11.3 Aeronautics -- 12.11.4 Railway -- 12.12 Summary and Outlook -- References -- Chapter 13 Drilling and Repair of the Composite Sandwich Panels -- 13.1 Introduction | |
505 | 8 | |a 13.2 Input Parameters | |
650 | 0 | 7 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sandwichbauweise |0 (DE-588)4051569-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbundwerkstoff |0 (DE-588)4062670-2 |D s |
689 | 0 | 1 | |a Sandwichbauweise |0 (DE-588)4051569-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Krishnasamy, Senthilkumar |0 (DE-588)1241577471 |4 edt | |
700 | 1 | |a Muthukumar, Chandrasekar |4 edt | |
700 | 1 | |a Thiagamani, Senthil Muthu Kumar |4 edt | |
700 | 1 | |a Rangappa, Sanjay Mavinkere |0 (DE-588)1219460885 |4 edt | |
700 | 0 | |a Suchart Siengchin |0 (DE-588)136810772 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Krishnasamy, Senthilkumar |t Sandwich Composites |d Milton : Taylor & Francis Group,c2022 |n Druck-Ausgabe, Hardcover |z 978-0-367-69727-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-0-367-69732-7 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003143031 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033602206 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6825657 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1201/9781003143031 |l DE-706 |p ZDB-7-TFC |q UBY_PDA_TFC_Kauf_22 |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2646819 |
---|---|
_version_ | 1821936324909727744 |
any_adam_object | |
author2 | Krishnasamy, Senthilkumar Muthukumar, Chandrasekar Thiagamani, Senthil Muthu Kumar Rangappa, Sanjay Mavinkere Suchart Siengchin |
author2_role | edt edt edt edt edt |
author2_variant | s k sk c m cm s m k t smk smkt s m r sm smr s s ss |
author_GND | (DE-588)1241577471 (DE-588)1219460885 (DE-588)136810772 |
author_facet | Krishnasamy, Senthilkumar Muthukumar, Chandrasekar Thiagamani, Senthil Muthu Kumar Rangappa, Sanjay Mavinkere Suchart Siengchin |
building | Verbundindex |
bvnumber | BV048221469 |
classification_rvk | ZM 7020 ZM 7029 |
classification_tum | WER 420 |
collection | ZDB-30-PQE ZDB-7-TFC |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1 Introduction to Sandwich Composite Panels and Their Fabrication Methods -- 1.1 What Are Sandwich Composite Structures? -- 1.2 Brief History of Sandwich Composite Structures -- 1.3 Common Materials Used in Composite Sandwich Structures and Their Properties -- 1.3.1 Face Materials -- 1.3.2 Core Materials -- 1.3.2.1 Foams or Solid Cores -- 1.3.2.2 Corrugated or Truss Cores -- 1.3.2.3 Honeycomb Structures -- 1.3.3 Adhesive Materials -- 1.3.3.1 Epoxy Resins and Toughened Epoxies -- 1.3.3.2 Phenolics -- 1.3.3.3 Polyurethanes -- 1.3.3.4 Urethane Acrylates -- 1.3.3.5 Polyester and Vinyl Ester Resins -- 1.4 Fabrication Methods for Composite Sandwich Laminates -- 1.4.1 Hand Layup Process -- 1.4.2 Compression Moulding Process -- 1.4.3 Filament Winding Process -- 1.4.4 Vacuum Bagging and Autoclave Moulding Process -- 1.4.5 Pultrusion Process -- 1.4.6 Resin Transfer Moulding (RTM) -- 1.4.7 Additive Manufacturing Processes -- 1.5 Conclusions -- References -- Chapter 2 Corrugated Core- and Fold Core-Based Sandwich Panels -- 2.1 Introduction -- 2.2 Designs and Structures -- 2.2.1 Corrugated Cores -- 2.2.2 Fold Cores -- 2.3 Materials -- 2.3.1 Corrugated Cores -- 2.3.2 Fold Cores -- 2.4 Mechanical Properties -- 2.4.1 Corrugated Cores -- 2.4.2 Fold Cores -- 2.5 Manufacturing Methods -- 2.5.1 Corrugated Cores -- 2.5.2 Fold Cores -- 2.6 Applications -- 2.6.1 Corrugated Cores -- 2.6.2 Fold Cores -- 2.7 Conclusions -- References -- Chapter 3 Metallic Core- and Truss Core-Based Composite Sandwich Panels -- 3.1 Introduction -- 3.2 Fabrication Approach and Performance Characterization of Metallic Core-Based Composite Sandwich Panels -- 3.3 Fabrication Approach and Performance Characterization of Truss Core-Based Composite Sandwich Panels References -- Chapter 4 Composite Sandwich Panels with the Metallic Facesheets -- 4.1 Introduction -- 4.2 Classification of FMLs -- 4.3 Composite Sandwich Laminates -- 4.4 Adhesive Bonding of Metal-Composite Interface -- 4.5 The Manufacturing Process of FMLs -- 4.6 Conclusions -- References -- Chapter 5 Failure Behavior and Residual Strength of the Composite Sandwich Panels Subjected to Compression after Impact Testing -- 5.1 Introduction -- 5.2 CAI Test Methods and Standards -- 5.3 Experimental Investigations on CAI for Sandwich Composite Panels -- 5.3.1 Non-Crimp Fabric (NCF) Sandwich Panels -- 5.3.2 CAI Behavior of Thin Laminates -- 5.3.3 CAI: Issue of Core Crushing Damage -- 5.3.4 CAI by Column Compression -- 5.3.5 CAI of Honeycomb Core Structures -- 5.3.6 CAI: Issue of Low Temperature -- 5.3.7 CAI Issue in Expendable Launch Vehicles -- 5.3.8 CAI after Full-Scale Blast Experiments -- 5.3.9 Influence of Skin Thickness Increment on CAI -- 5.3.10 Influence of Core Density Increment on CAI -- 5.3.11 Reinforcement Effect on CAI -- 5.3.12 Issue of Hybrid Face Sheet Effect on CAI -- 5.3.13 Thickness and Ply-Stacking Sequence Effect on CAI -- 5.3.14 Shape-Memory Alloy (SMA)-GFRP Hybrid Face Sheets and CAI Behavior -- 5.4 Numerical Studies on Failure of Composite Sandwich Panels for Compression after Impact Loading -- 5.4.1 Damage Zone Modeled as Equivalent Hole -- 5.4.2 Modeling of Intralaminar and Interlaminar Damages -- 5.4.2.1 Continuum Damage Model (CDM) -- 5.4.2.2 Interlaminar Damage (Delamination) Modeling for Composites -- 5.4.2.3 Modeling of Matrix Cracking and Interface Delamination through Cohesive Elements -- 5.5 State-of-the-Art Numerical Models Available in the Literature to Study Intralaminar Failure and Delamination of Sandwich Composites -- 5.5.1 Composite Panels and Laminates -- 5.5.2 Foam Core Sandwich Panel under CAI. 5.5.3 CAI Test Model of Damaged Woven Fabric Sandwich Composite -- 5.5.4 Stitched Composite under CAI -- 5.5.5 Three-Dimensional Parametric Study for Impact Behavior of Honeycomb Sandwich Structure -- 5.6 Single FE Model for Impact Damage and CAI -- 5.7 Conclusions -- References -- Chapter 6 Low-Velocity Impact Response of the Composite Sandwich Panels -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 Results and Discussion -- 6.3.1 Effect of Density of Core on Structural Response -- 6.3.2 Force and Energy Response -- 6.3.3 Damage Analysis -- 6.3.4 Taguchi Analysis -- 6.4 Conclusions -- Acknowledgment -- References -- Chapter 7 High-Velocity Impact Properties of the Composite Sandwich Panels -- 7.1 Introduction -- 7.2 High-Velocity Impact Properties of Sandwich Panels -- 7.2.1 Polymeric Core Sandwich Panels -- 7.2.2 Metallic Core Sandwich Panels -- 7.2.3 Bio-based Core Sandwich Panels -- 7.2.4 Hybrid Core Sandwich Panels -- 7.2.5 New Advanced Sandwich Panels -- 7.2.6 Comparative Study -- 7.3 Conclusions -- References -- Chapter 8 Investigation of Blast Loading Response of the Composite Sandwich Panels -- 8.1 Introduction -- 8.2 Theoretical and Geometrical Development -- 8.3 Boundary Conditions -- 8.4 Blast Load -- 8.5 Simulation Modeling -- 8.6 Results and Discussion -- 8.7 Concluding Remarks -- References -- Chapter 9 Flexural Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 9.1 Introduction -- 9.2 Development and Performance Characterization of GFRP Connectors -- 9.2.1 Details of the Proposed Connectors -- 9.2.2 Test Specimens -- 9.2.3 Test Results -- 9.3 Structural Performance of RC One-Way Slabs with Geopolymer Concrete -- 9.3.1 Test Specimens -- 9.3.2 Test Results -- 9.3.3 Comparison with the Code of Practice and Guidelines 9.4 Flexural Performance of the Sandwich Panel with Geopolymer Concrete -- 9.4.1 Test Specimens -- 9.4.2 Test Results -- 9.4.3 Degree of Composite Action -- 9.4.4 Simplified Approach for Stiffness Prediction of the PCSWP -- 9.5 Fire and Post-Fire Residual Performance of the Sandwich Panel with Geopolymer Concrete -- 9.5.1 Test Specimens -- 9.5.2 Test Procedure -- 9.5.3 Test Results -- 9.6 Conclusions -- References -- Chapter 10 Axial Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 10.1 Introduction -- 10.2 Materials -- 10.2.1 Geopolymer Concrete -- 10.2.2 BFRP Bar/Grid -- 10.2.3 GFRP Tubular Connectors -- 10.2.4 Insulation -- 10.3 Axial Compression Behavior - Experimental Investigation -- 10.4 Eccentric Compression Behavior - Experimental Investigation -- 10.5 Role of Connectors -- 10.6 Simplified Theoretical Investigation -- 10.6.1 SWPs Subjected to Eccentric Axial Load -- 10.7 Prediction of Load Capacity from the Existing Empirical Design Formulae -- 10.8 Concluding Remarks -- References -- Chapter 11 Enhanced Failure Behavior for Sandwiches with Hybrid Wire Mesh/FRP Face Sheets -- 11.1 Introduction -- 11.2 Significance of Wire Mesh Sheets for Hybrid Composites -- 11.3 Hybridization of Fiber/Polymer Matrix Face Sheets with Stainless Steel Wire Mesh Sheets -- 11.4 Evaluation of the Flexural Characteristics of the Developed Sandwiches with Carbon/Epoxy/Wire Mesh Face Sheets -- 11.4.1 Load-Deflection Curves -- 11.4.2 Load-Carrying Capacities -- 11.5 Examination of Failure Behaviors -- 11.6 Conclusions -- References -- Chapter 12 Low-Velocity Impact Behaviour of Textile-Reinforced Composite Sandwich Panels -- 12.1 Introduction -- 12.1.1 Mechanics of Impact -- 12.2 Concept of Low-Velocity Impact -- 12.3 Importance of Impact in Composites -- 12.4 Manufacturing of Sandwich Composites 12.4.1 Face Material -- 12.4.1.1 Manufacturing of Face Sheet -- 12.4.2 Core Material -- 12.4.2.1 Balsa Wood -- 12.4.2.2 Metallic -- 12.4.2.3 Polymeric -- 12.4.3 Honeycomb -- 12.4.3.1 3D Woven Honeycomb Structures -- 12.4.3.2 3D Woven Hollow Spacer Structures -- 12.4.3.3 Fold Cores -- 12.4.3.4 Truss -- 12.4.3.5 Integrated Woven Cores -- 12.4.3.6 Manufacturing of Core -- 12.4.4 Manufacturing of Sandwich Panel -- 12.4.4.1 Skin-Core Joining Methods -- 12.4.5 Different Core Orientations in Sandwich Panel -- 12.5 Characterization of Composite Sandwich Panel -- 12.5.1 In-Plane Tensile Properties -- 12.5.2 Flatwise Tensile Strength of Sandwich Panels -- 12.5.3 Edgewise Compressive Strength of Sandwich Panels -- 12.5.4 Flatwise Compressive Properties of Cores in a Sandwich Panel -- 12.5.5 Standard Test Method for Core Shear Properties of Sandwich Panel -- 12.5.6 Different Impact Tests -- 12.6 Impact Damage -- 12.6.1 Causes of Impact Damage -- 12.6.2 Mechanism of Impact Damage -- 12.6.3 Energy Absorption during Impact -- 12.7 Factors Affecting Impact in Composite Sandwich Panels -- 12.7.1 Effect of Impactor -- 12.7.2 Effect of the Target Structure -- 12.7.3 External Factors -- 12.8 Modes of Failure and Failure Load in Low-Velocity Impact -- 12.9 Structure and Properties of Textile Structure-Based Composite Sandwich Panels -- 12.9.1 Using Metal Face Sheets with Textile-Based Core -- 12.9.2 Auxetic Structure -- 12.9.3 Integrated Structure -- 12.9.4 Dual-Core-Based Structure -- 12.9.5 Incorporation of Nano-Structures -- 12.10 Modelling -- 12.10.1 Analytical Modelling -- 12.10.2 Numerical Modelling -- 12.11 Applications -- 12.11.1 Civil Infrastructure -- 12.11.2 Marine Structures -- 12.11.3 Aeronautics -- 12.11.4 Railway -- 12.12 Summary and Outlook -- References -- Chapter 13 Drilling and Repair of the Composite Sandwich Panels -- 13.1 Introduction 13.2 Input Parameters |
ctrlnum | (ZDB-30-PQE)EBC6825657 (ZDB-30-PAD)EBC6825657 (ZDB-89-EBL)EBL6825657 (ZDB-7-TFC)9781003143031 (OCoLC)1289370095 (DE-599)BVBBV048221469 |
dewey-full | 620.1/18 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/18 |
dewey-search | 620.1/18 |
dewey-sort | 3620.1 218 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
doi_str_mv | 10.1201/9781003143031 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11953nam a2200661zc 4500</leader><controlfield tag="001">BV048221469</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000531701</subfield><subfield code="9">978-1-00-053170-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003143031</subfield><subfield code="9">978-1-003-14303-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003143031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6825657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6825657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6825657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-7-TFC)9781003143031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1289370095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221469</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/18</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7020</subfield><subfield code="0">(DE-625)157098:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7029</subfield><subfield code="0">(DE-625)157104:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 420</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sandwich composites</subfield><subfield code="b">fabrication and characterization</subfield><subfield code="c">edited by Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1 Introduction to Sandwich Composite Panels and Their Fabrication Methods -- 1.1 What Are Sandwich Composite Structures? -- 1.2 Brief History of Sandwich Composite Structures -- 1.3 Common Materials Used in Composite Sandwich Structures and Their Properties -- 1.3.1 Face Materials -- 1.3.2 Core Materials -- 1.3.2.1 Foams or Solid Cores -- 1.3.2.2 Corrugated or Truss Cores -- 1.3.2.3 Honeycomb Structures -- 1.3.3 Adhesive Materials -- 1.3.3.1 Epoxy Resins and Toughened Epoxies -- 1.3.3.2 Phenolics -- 1.3.3.3 Polyurethanes -- 1.3.3.4 Urethane Acrylates -- 1.3.3.5 Polyester and Vinyl Ester Resins -- 1.4 Fabrication Methods for Composite Sandwich Laminates -- 1.4.1 Hand Layup Process -- 1.4.2 Compression Moulding Process -- 1.4.3 Filament Winding Process -- 1.4.4 Vacuum Bagging and Autoclave Moulding Process -- 1.4.5 Pultrusion Process -- 1.4.6 Resin Transfer Moulding (RTM) -- 1.4.7 Additive Manufacturing Processes -- 1.5 Conclusions -- References -- Chapter 2 Corrugated Core- and Fold Core-Based Sandwich Panels -- 2.1 Introduction -- 2.2 Designs and Structures -- 2.2.1 Corrugated Cores -- 2.2.2 Fold Cores -- 2.3 Materials -- 2.3.1 Corrugated Cores -- 2.3.2 Fold Cores -- 2.4 Mechanical Properties -- 2.4.1 Corrugated Cores -- 2.4.2 Fold Cores -- 2.5 Manufacturing Methods -- 2.5.1 Corrugated Cores -- 2.5.2 Fold Cores -- 2.6 Applications -- 2.6.1 Corrugated Cores -- 2.6.2 Fold Cores -- 2.7 Conclusions -- References -- Chapter 3 Metallic Core- and Truss Core-Based Composite Sandwich Panels -- 3.1 Introduction -- 3.2 Fabrication Approach and Performance Characterization of Metallic Core-Based Composite Sandwich Panels -- 3.3 Fabrication Approach and Performance Characterization of Truss Core-Based Composite Sandwich Panels</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 4 Composite Sandwich Panels with the Metallic Facesheets -- 4.1 Introduction -- 4.2 Classification of FMLs -- 4.3 Composite Sandwich Laminates -- 4.4 Adhesive Bonding of Metal-Composite Interface -- 4.5 The Manufacturing Process of FMLs -- 4.6 Conclusions -- References -- Chapter 5 Failure Behavior and Residual Strength of the Composite Sandwich Panels Subjected to Compression after Impact Testing -- 5.1 Introduction -- 5.2 CAI Test Methods and Standards -- 5.3 Experimental Investigations on CAI for Sandwich Composite Panels -- 5.3.1 Non-Crimp Fabric (NCF) Sandwich Panels -- 5.3.2 CAI Behavior of Thin Laminates -- 5.3.3 CAI: Issue of Core Crushing Damage -- 5.3.4 CAI by Column Compression -- 5.3.5 CAI of Honeycomb Core Structures -- 5.3.6 CAI: Issue of Low Temperature -- 5.3.7 CAI Issue in Expendable Launch Vehicles -- 5.3.8 CAI after Full-Scale Blast Experiments -- 5.3.9 Influence of Skin Thickness Increment on CAI -- 5.3.10 Influence of Core Density Increment on CAI -- 5.3.11 Reinforcement Effect on CAI -- 5.3.12 Issue of Hybrid Face Sheet Effect on CAI -- 5.3.13 Thickness and Ply-Stacking Sequence Effect on CAI -- 5.3.14 Shape-Memory Alloy (SMA)-GFRP Hybrid Face Sheets and CAI Behavior -- 5.4 Numerical Studies on Failure of Composite Sandwich Panels for Compression after Impact Loading -- 5.4.1 Damage Zone Modeled as Equivalent Hole -- 5.4.2 Modeling of Intralaminar and Interlaminar Damages -- 5.4.2.1 Continuum Damage Model (CDM) -- 5.4.2.2 Interlaminar Damage (Delamination) Modeling for Composites -- 5.4.2.3 Modeling of Matrix Cracking and Interface Delamination through Cohesive Elements -- 5.5 State-of-the-Art Numerical Models Available in the Literature to Study Intralaminar Failure and Delamination of Sandwich Composites -- 5.5.1 Composite Panels and Laminates -- 5.5.2 Foam Core Sandwich Panel under CAI.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5.3 CAI Test Model of Damaged Woven Fabric Sandwich Composite -- 5.5.4 Stitched Composite under CAI -- 5.5.5 Three-Dimensional Parametric Study for Impact Behavior of Honeycomb Sandwich Structure -- 5.6 Single FE Model for Impact Damage and CAI -- 5.7 Conclusions -- References -- Chapter 6 Low-Velocity Impact Response of the Composite Sandwich Panels -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 Results and Discussion -- 6.3.1 Effect of Density of Core on Structural Response -- 6.3.2 Force and Energy Response -- 6.3.3 Damage Analysis -- 6.3.4 Taguchi Analysis -- 6.4 Conclusions -- Acknowledgment -- References -- Chapter 7 High-Velocity Impact Properties of the Composite Sandwich Panels -- 7.1 Introduction -- 7.2 High-Velocity Impact Properties of Sandwich Panels -- 7.2.1 Polymeric Core Sandwich Panels -- 7.2.2 Metallic Core Sandwich Panels -- 7.2.3 Bio-based Core Sandwich Panels -- 7.2.4 Hybrid Core Sandwich Panels -- 7.2.5 New Advanced Sandwich Panels -- 7.2.6 Comparative Study -- 7.3 Conclusions -- References -- Chapter 8 Investigation of Blast Loading Response of the Composite Sandwich Panels -- 8.1 Introduction -- 8.2 Theoretical and Geometrical Development -- 8.3 Boundary Conditions -- 8.4 Blast Load -- 8.5 Simulation Modeling -- 8.6 Results and Discussion -- 8.7 Concluding Remarks -- References -- Chapter 9 Flexural Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 9.1 Introduction -- 9.2 Development and Performance Characterization of GFRP Connectors -- 9.2.1 Details of the Proposed Connectors -- 9.2.2 Test Specimens -- 9.2.3 Test Results -- 9.3 Structural Performance of RC One-Way Slabs with Geopolymer Concrete -- 9.3.1 Test Specimens -- 9.3.2 Test Results -- 9.3.3 Comparison with the Code of Practice and Guidelines</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.4 Flexural Performance of the Sandwich Panel with Geopolymer Concrete -- 9.4.1 Test Specimens -- 9.4.2 Test Results -- 9.4.3 Degree of Composite Action -- 9.4.4 Simplified Approach for Stiffness Prediction of the PCSWP -- 9.5 Fire and Post-Fire Residual Performance of the Sandwich Panel with Geopolymer Concrete -- 9.5.1 Test Specimens -- 9.5.2 Test Procedure -- 9.5.3 Test Results -- 9.6 Conclusions -- References -- Chapter 10 Axial Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 10.1 Introduction -- 10.2 Materials -- 10.2.1 Geopolymer Concrete -- 10.2.2 BFRP Bar/Grid -- 10.2.3 GFRP Tubular Connectors -- 10.2.4 Insulation -- 10.3 Axial Compression Behavior - Experimental Investigation -- 10.4 Eccentric Compression Behavior - Experimental Investigation -- 10.5 Role of Connectors -- 10.6 Simplified Theoretical Investigation -- 10.6.1 SWPs Subjected to Eccentric Axial Load -- 10.7 Prediction of Load Capacity from the Existing Empirical Design Formulae -- 10.8 Concluding Remarks -- References -- Chapter 11 Enhanced Failure Behavior for Sandwiches with Hybrid Wire Mesh/FRP Face Sheets -- 11.1 Introduction -- 11.2 Significance of Wire Mesh Sheets for Hybrid Composites -- 11.3 Hybridization of Fiber/Polymer Matrix Face Sheets with Stainless Steel Wire Mesh Sheets -- 11.4 Evaluation of the Flexural Characteristics of the Developed Sandwiches with Carbon/Epoxy/Wire Mesh Face Sheets -- 11.4.1 Load-Deflection Curves -- 11.4.2 Load-Carrying Capacities -- 11.5 Examination of Failure Behaviors -- 11.6 Conclusions -- References -- Chapter 12 Low-Velocity Impact Behaviour of Textile-Reinforced Composite Sandwich Panels -- 12.1 Introduction -- 12.1.1 Mechanics of Impact -- 12.2 Concept of Low-Velocity Impact -- 12.3 Importance of Impact in Composites -- 12.4 Manufacturing of Sandwich Composites</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.4.1 Face Material -- 12.4.1.1 Manufacturing of Face Sheet -- 12.4.2 Core Material -- 12.4.2.1 Balsa Wood -- 12.4.2.2 Metallic -- 12.4.2.3 Polymeric -- 12.4.3 Honeycomb -- 12.4.3.1 3D Woven Honeycomb Structures -- 12.4.3.2 3D Woven Hollow Spacer Structures -- 12.4.3.3 Fold Cores -- 12.4.3.4 Truss -- 12.4.3.5 Integrated Woven Cores -- 12.4.3.6 Manufacturing of Core -- 12.4.4 Manufacturing of Sandwich Panel -- 12.4.4.1 Skin-Core Joining Methods -- 12.4.5 Different Core Orientations in Sandwich Panel -- 12.5 Characterization of Composite Sandwich Panel -- 12.5.1 In-Plane Tensile Properties -- 12.5.2 Flatwise Tensile Strength of Sandwich Panels -- 12.5.3 Edgewise Compressive Strength of Sandwich Panels -- 12.5.4 Flatwise Compressive Properties of Cores in a Sandwich Panel -- 12.5.5 Standard Test Method for Core Shear Properties of Sandwich Panel -- 12.5.6 Different Impact Tests -- 12.6 Impact Damage -- 12.6.1 Causes of Impact Damage -- 12.6.2 Mechanism of Impact Damage -- 12.6.3 Energy Absorption during Impact -- 12.7 Factors Affecting Impact in Composite Sandwich Panels -- 12.7.1 Effect of Impactor -- 12.7.2 Effect of the Target Structure -- 12.7.3 External Factors -- 12.8 Modes of Failure and Failure Load in Low-Velocity Impact -- 12.9 Structure and Properties of Textile Structure-Based Composite Sandwich Panels -- 12.9.1 Using Metal Face Sheets with Textile-Based Core -- 12.9.2 Auxetic Structure -- 12.9.3 Integrated Structure -- 12.9.4 Dual-Core-Based Structure -- 12.9.5 Incorporation of Nano-Structures -- 12.10 Modelling -- 12.10.1 Analytical Modelling -- 12.10.2 Numerical Modelling -- 12.11 Applications -- 12.11.1 Civil Infrastructure -- 12.11.2 Marine Structures -- 12.11.3 Aeronautics -- 12.11.4 Railway -- 12.12 Summary and Outlook -- References -- Chapter 13 Drilling and Repair of the Composite Sandwich Panels -- 13.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.2 Input Parameters</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sandwichbauweise</subfield><subfield code="0">(DE-588)4051569-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbundwerkstoff</subfield><subfield code="0">(DE-588)4062670-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sandwichbauweise</subfield><subfield code="0">(DE-588)4051569-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krishnasamy, Senthilkumar</subfield><subfield code="0">(DE-588)1241577471</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthukumar, Chandrasekar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thiagamani, Senthil Muthu Kumar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rangappa, Sanjay Mavinkere</subfield><subfield code="0">(DE-588)1219460885</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Suchart Siengchin</subfield><subfield code="0">(DE-588)136810772</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Krishnasamy, Senthilkumar</subfield><subfield code="t">Sandwich Composites</subfield><subfield code="d">Milton : Taylor & Francis Group,c2022</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-69727-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-367-69732-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003143031</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033602206</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6825657</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003143031</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="q">UBY_PDA_TFC_Kauf_22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221469 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:38:55Z |
institution | BVB |
isbn | 9781000531701 9781003143031 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033602206 |
oclc_num | 1289370095 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-706 |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-7-TFC ZDB-30-PQE TUM_PDA_PQE_Kauf ZDB-7-TFC UBY_PDA_TFC_Kauf_22 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spellingShingle | Sandwich composites fabrication and characterization Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1 Introduction to Sandwich Composite Panels and Their Fabrication Methods -- 1.1 What Are Sandwich Composite Structures? -- 1.2 Brief History of Sandwich Composite Structures -- 1.3 Common Materials Used in Composite Sandwich Structures and Their Properties -- 1.3.1 Face Materials -- 1.3.2 Core Materials -- 1.3.2.1 Foams or Solid Cores -- 1.3.2.2 Corrugated or Truss Cores -- 1.3.2.3 Honeycomb Structures -- 1.3.3 Adhesive Materials -- 1.3.3.1 Epoxy Resins and Toughened Epoxies -- 1.3.3.2 Phenolics -- 1.3.3.3 Polyurethanes -- 1.3.3.4 Urethane Acrylates -- 1.3.3.5 Polyester and Vinyl Ester Resins -- 1.4 Fabrication Methods for Composite Sandwich Laminates -- 1.4.1 Hand Layup Process -- 1.4.2 Compression Moulding Process -- 1.4.3 Filament Winding Process -- 1.4.4 Vacuum Bagging and Autoclave Moulding Process -- 1.4.5 Pultrusion Process -- 1.4.6 Resin Transfer Moulding (RTM) -- 1.4.7 Additive Manufacturing Processes -- 1.5 Conclusions -- References -- Chapter 2 Corrugated Core- and Fold Core-Based Sandwich Panels -- 2.1 Introduction -- 2.2 Designs and Structures -- 2.2.1 Corrugated Cores -- 2.2.2 Fold Cores -- 2.3 Materials -- 2.3.1 Corrugated Cores -- 2.3.2 Fold Cores -- 2.4 Mechanical Properties -- 2.4.1 Corrugated Cores -- 2.4.2 Fold Cores -- 2.5 Manufacturing Methods -- 2.5.1 Corrugated Cores -- 2.5.2 Fold Cores -- 2.6 Applications -- 2.6.1 Corrugated Cores -- 2.6.2 Fold Cores -- 2.7 Conclusions -- References -- Chapter 3 Metallic Core- and Truss Core-Based Composite Sandwich Panels -- 3.1 Introduction -- 3.2 Fabrication Approach and Performance Characterization of Metallic Core-Based Composite Sandwich Panels -- 3.3 Fabrication Approach and Performance Characterization of Truss Core-Based Composite Sandwich Panels References -- Chapter 4 Composite Sandwich Panels with the Metallic Facesheets -- 4.1 Introduction -- 4.2 Classification of FMLs -- 4.3 Composite Sandwich Laminates -- 4.4 Adhesive Bonding of Metal-Composite Interface -- 4.5 The Manufacturing Process of FMLs -- 4.6 Conclusions -- References -- Chapter 5 Failure Behavior and Residual Strength of the Composite Sandwich Panels Subjected to Compression after Impact Testing -- 5.1 Introduction -- 5.2 CAI Test Methods and Standards -- 5.3 Experimental Investigations on CAI for Sandwich Composite Panels -- 5.3.1 Non-Crimp Fabric (NCF) Sandwich Panels -- 5.3.2 CAI Behavior of Thin Laminates -- 5.3.3 CAI: Issue of Core Crushing Damage -- 5.3.4 CAI by Column Compression -- 5.3.5 CAI of Honeycomb Core Structures -- 5.3.6 CAI: Issue of Low Temperature -- 5.3.7 CAI Issue in Expendable Launch Vehicles -- 5.3.8 CAI after Full-Scale Blast Experiments -- 5.3.9 Influence of Skin Thickness Increment on CAI -- 5.3.10 Influence of Core Density Increment on CAI -- 5.3.11 Reinforcement Effect on CAI -- 5.3.12 Issue of Hybrid Face Sheet Effect on CAI -- 5.3.13 Thickness and Ply-Stacking Sequence Effect on CAI -- 5.3.14 Shape-Memory Alloy (SMA)-GFRP Hybrid Face Sheets and CAI Behavior -- 5.4 Numerical Studies on Failure of Composite Sandwich Panels for Compression after Impact Loading -- 5.4.1 Damage Zone Modeled as Equivalent Hole -- 5.4.2 Modeling of Intralaminar and Interlaminar Damages -- 5.4.2.1 Continuum Damage Model (CDM) -- 5.4.2.2 Interlaminar Damage (Delamination) Modeling for Composites -- 5.4.2.3 Modeling of Matrix Cracking and Interface Delamination through Cohesive Elements -- 5.5 State-of-the-Art Numerical Models Available in the Literature to Study Intralaminar Failure and Delamination of Sandwich Composites -- 5.5.1 Composite Panels and Laminates -- 5.5.2 Foam Core Sandwich Panel under CAI. 5.5.3 CAI Test Model of Damaged Woven Fabric Sandwich Composite -- 5.5.4 Stitched Composite under CAI -- 5.5.5 Three-Dimensional Parametric Study for Impact Behavior of Honeycomb Sandwich Structure -- 5.6 Single FE Model for Impact Damage and CAI -- 5.7 Conclusions -- References -- Chapter 6 Low-Velocity Impact Response of the Composite Sandwich Panels -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 Results and Discussion -- 6.3.1 Effect of Density of Core on Structural Response -- 6.3.2 Force and Energy Response -- 6.3.3 Damage Analysis -- 6.3.4 Taguchi Analysis -- 6.4 Conclusions -- Acknowledgment -- References -- Chapter 7 High-Velocity Impact Properties of the Composite Sandwich Panels -- 7.1 Introduction -- 7.2 High-Velocity Impact Properties of Sandwich Panels -- 7.2.1 Polymeric Core Sandwich Panels -- 7.2.2 Metallic Core Sandwich Panels -- 7.2.3 Bio-based Core Sandwich Panels -- 7.2.4 Hybrid Core Sandwich Panels -- 7.2.5 New Advanced Sandwich Panels -- 7.2.6 Comparative Study -- 7.3 Conclusions -- References -- Chapter 8 Investigation of Blast Loading Response of the Composite Sandwich Panels -- 8.1 Introduction -- 8.2 Theoretical and Geometrical Development -- 8.3 Boundary Conditions -- 8.4 Blast Load -- 8.5 Simulation Modeling -- 8.6 Results and Discussion -- 8.7 Concluding Remarks -- References -- Chapter 9 Flexural Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 9.1 Introduction -- 9.2 Development and Performance Characterization of GFRP Connectors -- 9.2.1 Details of the Proposed Connectors -- 9.2.2 Test Specimens -- 9.2.3 Test Results -- 9.3 Structural Performance of RC One-Way Slabs with Geopolymer Concrete -- 9.3.1 Test Specimens -- 9.3.2 Test Results -- 9.3.3 Comparison with the Code of Practice and Guidelines 9.4 Flexural Performance of the Sandwich Panel with Geopolymer Concrete -- 9.4.1 Test Specimens -- 9.4.2 Test Results -- 9.4.3 Degree of Composite Action -- 9.4.4 Simplified Approach for Stiffness Prediction of the PCSWP -- 9.5 Fire and Post-Fire Residual Performance of the Sandwich Panel with Geopolymer Concrete -- 9.5.1 Test Specimens -- 9.5.2 Test Procedure -- 9.5.3 Test Results -- 9.6 Conclusions -- References -- Chapter 10 Axial Behavior of Reinforced Concrete Sandwich Wall Panels Enabled by Fiber-Reinforced Polymer (FRP) Connectors -- 10.1 Introduction -- 10.2 Materials -- 10.2.1 Geopolymer Concrete -- 10.2.2 BFRP Bar/Grid -- 10.2.3 GFRP Tubular Connectors -- 10.2.4 Insulation -- 10.3 Axial Compression Behavior - Experimental Investigation -- 10.4 Eccentric Compression Behavior - Experimental Investigation -- 10.5 Role of Connectors -- 10.6 Simplified Theoretical Investigation -- 10.6.1 SWPs Subjected to Eccentric Axial Load -- 10.7 Prediction of Load Capacity from the Existing Empirical Design Formulae -- 10.8 Concluding Remarks -- References -- Chapter 11 Enhanced Failure Behavior for Sandwiches with Hybrid Wire Mesh/FRP Face Sheets -- 11.1 Introduction -- 11.2 Significance of Wire Mesh Sheets for Hybrid Composites -- 11.3 Hybridization of Fiber/Polymer Matrix Face Sheets with Stainless Steel Wire Mesh Sheets -- 11.4 Evaluation of the Flexural Characteristics of the Developed Sandwiches with Carbon/Epoxy/Wire Mesh Face Sheets -- 11.4.1 Load-Deflection Curves -- 11.4.2 Load-Carrying Capacities -- 11.5 Examination of Failure Behaviors -- 11.6 Conclusions -- References -- Chapter 12 Low-Velocity Impact Behaviour of Textile-Reinforced Composite Sandwich Panels -- 12.1 Introduction -- 12.1.1 Mechanics of Impact -- 12.2 Concept of Low-Velocity Impact -- 12.3 Importance of Impact in Composites -- 12.4 Manufacturing of Sandwich Composites 12.4.1 Face Material -- 12.4.1.1 Manufacturing of Face Sheet -- 12.4.2 Core Material -- 12.4.2.1 Balsa Wood -- 12.4.2.2 Metallic -- 12.4.2.3 Polymeric -- 12.4.3 Honeycomb -- 12.4.3.1 3D Woven Honeycomb Structures -- 12.4.3.2 3D Woven Hollow Spacer Structures -- 12.4.3.3 Fold Cores -- 12.4.3.4 Truss -- 12.4.3.5 Integrated Woven Cores -- 12.4.3.6 Manufacturing of Core -- 12.4.4 Manufacturing of Sandwich Panel -- 12.4.4.1 Skin-Core Joining Methods -- 12.4.5 Different Core Orientations in Sandwich Panel -- 12.5 Characterization of Composite Sandwich Panel -- 12.5.1 In-Plane Tensile Properties -- 12.5.2 Flatwise Tensile Strength of Sandwich Panels -- 12.5.3 Edgewise Compressive Strength of Sandwich Panels -- 12.5.4 Flatwise Compressive Properties of Cores in a Sandwich Panel -- 12.5.5 Standard Test Method for Core Shear Properties of Sandwich Panel -- 12.5.6 Different Impact Tests -- 12.6 Impact Damage -- 12.6.1 Causes of Impact Damage -- 12.6.2 Mechanism of Impact Damage -- 12.6.3 Energy Absorption during Impact -- 12.7 Factors Affecting Impact in Composite Sandwich Panels -- 12.7.1 Effect of Impactor -- 12.7.2 Effect of the Target Structure -- 12.7.3 External Factors -- 12.8 Modes of Failure and Failure Load in Low-Velocity Impact -- 12.9 Structure and Properties of Textile Structure-Based Composite Sandwich Panels -- 12.9.1 Using Metal Face Sheets with Textile-Based Core -- 12.9.2 Auxetic Structure -- 12.9.3 Integrated Structure -- 12.9.4 Dual-Core-Based Structure -- 12.9.5 Incorporation of Nano-Structures -- 12.10 Modelling -- 12.10.1 Analytical Modelling -- 12.10.2 Numerical Modelling -- 12.11 Applications -- 12.11.1 Civil Infrastructure -- 12.11.2 Marine Structures -- 12.11.3 Aeronautics -- 12.11.4 Railway -- 12.12 Summary and Outlook -- References -- Chapter 13 Drilling and Repair of the Composite Sandwich Panels -- 13.1 Introduction 13.2 Input Parameters Verbundwerkstoff (DE-588)4062670-2 gnd Sandwichbauweise (DE-588)4051569-2 gnd |
subject_GND | (DE-588)4062670-2 (DE-588)4051569-2 |
title | Sandwich composites fabrication and characterization |
title_auth | Sandwich composites fabrication and characterization |
title_exact_search | Sandwich composites fabrication and characterization |
title_full | Sandwich composites fabrication and characterization edited by Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin |
title_fullStr | Sandwich composites fabrication and characterization edited by Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin |
title_full_unstemmed | Sandwich composites fabrication and characterization edited by Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin |
title_short | Sandwich composites |
title_sort | sandwich composites fabrication and characterization |
title_sub | fabrication and characterization |
topic | Verbundwerkstoff (DE-588)4062670-2 gnd Sandwichbauweise (DE-588)4051569-2 gnd |
topic_facet | Verbundwerkstoff Sandwichbauweise |
url | https://doi.org/10.1201/9781003143031 |
work_keys_str_mv | AT krishnasamysenthilkumar sandwichcompositesfabricationandcharacterization AT muthukumarchandrasekar sandwichcompositesfabricationandcharacterization AT thiagamanisenthilmuthukumar sandwichcompositesfabricationandcharacterization AT rangappasanjaymavinkere sandwichcompositesfabricationandcharacterization AT suchartsiengchin sandwichcompositesfabricationandcharacterization |