Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts:
The forecasting uncertainty around point macroeconomic forecasts is usually measured by the historical performance of the forecasting model, using measures such as root mean squared forecasting errors (RMSE). This measure, however, has the major drawback that it is constant over time and hence does...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Paris
OECD Publishing
2012
|
Schriftenreihe: | OECD Economics Department Working Papers
|
Schlagwörter: | |
Links: | https://doi.org/10.1787/5k94kq50b2jd-en |
Zusammenfassung: | The forecasting uncertainty around point macroeconomic forecasts is usually measured by the historical performance of the forecasting model, using measures such as root mean squared forecasting errors (RMSE). This measure, however, has the major drawback that it is constant over time and hence does not convey any information on the specific source of uncertainty nor the magnitude and balance of risks in the immediate conjuncture. Moreover, specific parametric assumptions on the probability distribution of forecasting errors are needed in order to draw confidence bands around point forecasts. This paper proposes an alternative time-varying simulated RMSE, obtained by means of non-parametric stochastic simulations, which combines the uncertainty around the model's parameters and the structural errors term to construct asymmetric confidence bands around point forecasts. The procedure is applied, by way of example, to the short-term real GDP growth forecasts generated by the OECD Indicator Model for Germany. The empirical probability distributions of the GDP growth forecasts, derived through the bootstrapping technique, allow the ex ante probability of, for example, a negative GDP growth forecast for the current quarter to be estimated. The results suggest the presence of peaks of higher uncertainty related to economic recession events, with a balance of risks which became negative in the immediate aftermath of the global financial crisis |
Umfang: | 1 Online-Ressource (32 Seiten) 21 x 29.7cm |
DOI: | 10.1787/5k94kq50b2jd-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047936604 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2012 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/5k94kq50b2jd-en |2 doi | |
035 | |a (ZDB-13-SOC)061250813 | ||
035 | |a (OCoLC)1312709439 | ||
035 | |a (DE-599)BVBBV047936604 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Rusticelli, Elena |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts |c Elena Rusticelli = Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE / Elena Rusticelli |
246 | 1 | 3 | |a Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE |
264 | 1 | |a Paris |b OECD Publishing |c 2012 | |
300 | |a 1 Online-Ressource (32 Seiten) |c 21 x 29.7cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Economics Department Working Papers | |
520 | |a The forecasting uncertainty around point macroeconomic forecasts is usually measured by the historical performance of the forecasting model, using measures such as root mean squared forecasting errors (RMSE). This measure, however, has the major drawback that it is constant over time and hence does not convey any information on the specific source of uncertainty nor the magnitude and balance of risks in the immediate conjuncture. Moreover, specific parametric assumptions on the probability distribution of forecasting errors are needed in order to draw confidence bands around point forecasts. This paper proposes an alternative time-varying simulated RMSE, obtained by means of non-parametric stochastic simulations, which combines the uncertainty around the model's parameters and the structural errors term to construct asymmetric confidence bands around point forecasts. The procedure is applied, by way of example, to the short-term real GDP growth forecasts generated by the OECD Indicator Model for Germany. The empirical probability distributions of the GDP growth forecasts, derived through the bootstrapping technique, allow the ex ante probability of, for example, a negative GDP growth forecast for the current quarter to be estimated. The results suggest the presence of peaks of higher uncertainty related to economic recession events, with a balance of risks which became negative in the immediate aftermath of the global financial crisis | ||
650 | 4 | |a Economics | |
856 | 4 | 0 | |u https://doi.org/10.1787/5k94kq50b2jd-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033318098 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2632960 |
---|---|
_version_ | 1821934728389853184 |
adam_text | |
any_adam_object | |
author | Rusticelli, Elena |
author_facet | Rusticelli, Elena |
author_role | aut |
author_sort | Rusticelli, Elena |
author_variant | e r er |
building | Verbundindex |
bvnumber | BV047936604 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)061250813 (OCoLC)1312709439 (DE-599)BVBBV047936604 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/5k94kq50b2jd-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047936604</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2012 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/5k94kq50b2jd-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)061250813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312709439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047936604</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rusticelli, Elena</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts</subfield><subfield code="c">Elena Rusticelli = Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE / Elena Rusticelli</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (32 Seiten)</subfield><subfield code="c">21 x 29.7cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Economics Department Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The forecasting uncertainty around point macroeconomic forecasts is usually measured by the historical performance of the forecasting model, using measures such as root mean squared forecasting errors (RMSE). This measure, however, has the major drawback that it is constant over time and hence does not convey any information on the specific source of uncertainty nor the magnitude and balance of risks in the immediate conjuncture. Moreover, specific parametric assumptions on the probability distribution of forecasting errors are needed in order to draw confidence bands around point forecasts. This paper proposes an alternative time-varying simulated RMSE, obtained by means of non-parametric stochastic simulations, which combines the uncertainty around the model's parameters and the structural errors term to construct asymmetric confidence bands around point forecasts. The procedure is applied, by way of example, to the short-term real GDP growth forecasts generated by the OECD Indicator Model for Germany. The empirical probability distributions of the GDP growth forecasts, derived through the bootstrapping technique, allow the ex ante probability of, for example, a negative GDP growth forecast for the current quarter to be estimated. The results suggest the presence of peaks of higher uncertainty related to economic recession events, with a balance of risks which became negative in the immediate aftermath of the global financial crisis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/5k94kq50b2jd-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033318098</subfield></datafield></record></collection> |
id | DE-604.BV047936604 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T15:45:59Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033318098 |
oclc_num | 1312709439 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (32 Seiten) 21 x 29.7cm |
psigel | ZDB-13-SOC |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Economics Department Working Papers |
spellingShingle | Rusticelli, Elena Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts Economics |
title | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts |
title_alt | Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE |
title_auth | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts |
title_exact_search | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts |
title_full | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts Elena Rusticelli = Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE / Elena Rusticelli |
title_fullStr | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts Elena Rusticelli = Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE / Elena Rusticelli |
title_full_unstemmed | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts Elena Rusticelli = Simulations stochastiques non-paramétriques pour étudier l'incertitude autour des prévisions du modèle d'indicateurs de l'OCDE / Elena Rusticelli |
title_short | Non-Parametric Stochastic Simulations to Investigate Uncertainty around the OECD Indicator Model Forecasts |
title_sort | non parametric stochastic simulations to investigate uncertainty around the oecd indicator model forecasts |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/5k94kq50b2jd-en |
work_keys_str_mv | AT rusticellielena nonparametricstochasticsimulationstoinvestigateuncertaintyaroundtheoecdindicatormodelforecasts AT rusticellielena simulationsstochastiquesnonparametriquespouretudierlincertitudeautourdesprevisionsdumodeledindicateursdelocde |