A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records:
Masking methods for the safe dissemination of microdata consist of distorting the original data while preserving a pre-defined set of statistical properties in the microdata. For continuous variables, available methodologies rely essentially on matrix masking and in particular on adding noise to the...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Paris
OECD Publishing
2011
|
Schriftenreihe: | OECD Statistics Working Papers
|
Schlagwörter: | |
Links: | https://doi.org/10.1787/5kgg95pb2tbr-en |
Zusammenfassung: | Masking methods for the safe dissemination of microdata consist of distorting the original data while preserving a pre-defined set of statistical properties in the microdata. For continuous variables, available methodologies rely essentially on matrix masking and in particular on adding noise to the original values, using more or less refined procedures depending on the extent of information that one seeks to preserve. Almost all of these methods make use of the critical assumption that the original datasets follow a normal distribution and/or that the noise has such a distribution. This assumption is, however, restrictive in the sense that few variables follow empirically a Gaussian pattern: the distribution of household income, for example, is positively skewed, and this skewness is essential information that has to be considered and preserved. This paper addresses these issues by presenting a simple multiplicative masking method that preserves skewness of the original data while offering a sufficient level of disclosure risk control. Numerical examples are provided, leading to the suggestion that this method could be well-suited for the dissemination of a broad range of microdata, including those based on administrative and business records |
Umfang: | 1 Online-Ressource (19 Seiten) 21 x 29.7cm |
DOI: | 10.1787/5kgg95pb2tbr-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047933569 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2011 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/5kgg95pb2tbr-en |2 doi | |
035 | |a (ZDB-13-SOC)061291927 | ||
035 | |a (OCoLC)1312688901 | ||
035 | |a (DE-599)BVBBV047933569 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Ruiz, Nicolas |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records |c Nicolas Ruiz |
264 | 1 | |a Paris |b OECD Publishing |c 2011 | |
300 | |a 1 Online-Ressource (19 Seiten) |c 21 x 29.7cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Statistics Working Papers | |
520 | |a Masking methods for the safe dissemination of microdata consist of distorting the original data while preserving a pre-defined set of statistical properties in the microdata. For continuous variables, available methodologies rely essentially on matrix masking and in particular on adding noise to the original values, using more or less refined procedures depending on the extent of information that one seeks to preserve. Almost all of these methods make use of the critical assumption that the original datasets follow a normal distribution and/or that the noise has such a distribution. This assumption is, however, restrictive in the sense that few variables follow empirically a Gaussian pattern: the distribution of household income, for example, is positively skewed, and this skewness is essential information that has to be considered and preserved. This paper addresses these issues by presenting a simple multiplicative masking method that preserves skewness of the original data while offering a sufficient level of disclosure risk control. Numerical examples are provided, leading to the suggestion that this method could be well-suited for the dissemination of a broad range of microdata, including those based on administrative and business records | ||
650 | 4 | |a Economics | |
856 | 4 | 0 | |u https://doi.org/10.1787/5kgg95pb2tbr-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033315063 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2629930 |
---|---|
_version_ | 1821934717349396481 |
adam_text | |
any_adam_object | |
author | Ruiz, Nicolas |
author_facet | Ruiz, Nicolas |
author_role | aut |
author_sort | Ruiz, Nicolas |
author_variant | n r nr |
building | Verbundindex |
bvnumber | BV047933569 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)061291927 (OCoLC)1312688901 (DE-599)BVBBV047933569 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/5kgg95pb2tbr-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047933569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2011 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/5kgg95pb2tbr-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)061291927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312688901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047933569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruiz, Nicolas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records</subfield><subfield code="c">Nicolas Ruiz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (19 Seiten)</subfield><subfield code="c">21 x 29.7cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Statistics Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Masking methods for the safe dissemination of microdata consist of distorting the original data while preserving a pre-defined set of statistical properties in the microdata. For continuous variables, available methodologies rely essentially on matrix masking and in particular on adding noise to the original values, using more or less refined procedures depending on the extent of information that one seeks to preserve. Almost all of these methods make use of the critical assumption that the original datasets follow a normal distribution and/or that the noise has such a distribution. This assumption is, however, restrictive in the sense that few variables follow empirically a Gaussian pattern: the distribution of household income, for example, is positively skewed, and this skewness is essential information that has to be considered and preserved. This paper addresses these issues by presenting a simple multiplicative masking method that preserves skewness of the original data while offering a sufficient level of disclosure risk control. Numerical examples are provided, leading to the suggestion that this method could be well-suited for the dissemination of a broad range of microdata, including those based on administrative and business records</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/5kgg95pb2tbr-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033315063</subfield></datafield></record></collection> |
id | DE-604.BV047933569 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T15:45:41Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033315063 |
oclc_num | 1312688901 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (19 Seiten) 21 x 29.7cm |
psigel | ZDB-13-SOC |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Statistics Working Papers |
spellingShingle | Ruiz, Nicolas A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records Economics |
title | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records |
title_auth | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records |
title_exact_search | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records |
title_full | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records Nicolas Ruiz |
title_fullStr | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records Nicolas Ruiz |
title_full_unstemmed | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records Nicolas Ruiz |
title_short | A Multiplicative Masking Method for Preserving the Skewness of the Original Micro-records |
title_sort | a multiplicative masking method for preserving the skewness of the original micro records |
topic | Economics |
topic_facet | Economics |
url | https://doi.org/10.1787/5kgg95pb2tbr-en |
work_keys_str_mv | AT ruiznicolas amultiplicativemaskingmethodforpreservingtheskewnessoftheoriginalmicrorecords |