Quantitative indicators for high-risk/high-reward research:
This paper describes the key characteristics of high-risk/high-reward research (HRHR), which has gained considerable interest from policy makers as a way to promote the development of new, 'out-of-the-box' ideas. It identifies three dimensions that are accentuated in HRHR research: higher...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schriftenreihe: | OECD Science, Technology and Industry Working Papers
|
Schlagwörter: | |
Links: | https://doi.org/10.1787/675cbef6-en |
Zusammenfassung: | This paper describes the key characteristics of high-risk/high-reward research (HRHR), which has gained considerable interest from policy makers as a way to promote the development of new, 'out-of-the-box' ideas. It identifies three dimensions that are accentuated in HRHR research: higher levels of basicness, generality and novelty. These knowledge characteristics are commonly associated with market failure and research that requires public investment because it has large spill-overs, long time horizons and high levels of uncertainty. This is illustrated with examples of specific discoveries embedding each knowledge characteristic and the application of appropriate quantitative measures. The paper concludes with the computation and demonstration of an indicator of novelty that may be particularly well suited for the monitoring and evaluation of HRHR research policies |
Umfang: | 1 Online-Ressource (44 Seiten) |
DOI: | 10.1787/675cbef6-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047928317 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2021 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/675cbef6-en |2 doi | |
035 | |a (ZDB-13-SOC)06828604X | ||
035 | |a (OCoLC)1312709015 | ||
035 | |a (DE-599)BVBBV047928317 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Machado, Diogo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantitative indicators for high-risk/high-reward research |c Diogo Machado |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (44 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Science, Technology and Industry Working Papers | |
520 | |a This paper describes the key characteristics of high-risk/high-reward research (HRHR), which has gained considerable interest from policy makers as a way to promote the development of new, 'out-of-the-box' ideas. It identifies three dimensions that are accentuated in HRHR research: higher levels of basicness, generality and novelty. These knowledge characteristics are commonly associated with market failure and research that requires public investment because it has large spill-overs, long time horizons and high levels of uncertainty. This is illustrated with examples of specific discoveries embedding each knowledge characteristic and the application of appropriate quantitative measures. The paper concludes with the computation and demonstration of an indicator of novelty that may be particularly well suited for the monitoring and evaluation of HRHR research policies | ||
650 | 4 | |a Science and Technology | |
856 | 4 | 0 | |u https://doi.org/10.1787/675cbef6-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033309810 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2624684 |
---|---|
_version_ | 1821933417639444481 |
adam_text | |
any_adam_object | |
author | Machado, Diogo |
author_facet | Machado, Diogo |
author_role | aut |
author_sort | Machado, Diogo |
author_variant | d m dm |
building | Verbundindex |
bvnumber | BV047928317 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)06828604X (OCoLC)1312709015 (DE-599)BVBBV047928317 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/675cbef6-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047928317</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2021 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/675cbef6-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)06828604X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312709015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047928317</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Machado, Diogo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative indicators for high-risk/high-reward research</subfield><subfield code="c">Diogo Machado</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (44 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Science, Technology and Industry Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the key characteristics of high-risk/high-reward research (HRHR), which has gained considerable interest from policy makers as a way to promote the development of new, 'out-of-the-box' ideas. It identifies three dimensions that are accentuated in HRHR research: higher levels of basicness, generality and novelty. These knowledge characteristics are commonly associated with market failure and research that requires public investment because it has large spill-overs, long time horizons and high levels of uncertainty. This is illustrated with examples of specific discoveries embedding each knowledge characteristic and the application of appropriate quantitative measures. The paper concludes with the computation and demonstration of an indicator of novelty that may be particularly well suited for the monitoring and evaluation of HRHR research policies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/675cbef6-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033309810</subfield></datafield></record></collection> |
id | DE-604.BV047928317 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T15:45:08Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033309810 |
oclc_num | 1312709015 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (44 Seiten) |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Science, Technology and Industry Working Papers |
spellingShingle | Machado, Diogo Quantitative indicators for high-risk/high-reward research Science and Technology |
title | Quantitative indicators for high-risk/high-reward research |
title_auth | Quantitative indicators for high-risk/high-reward research |
title_exact_search | Quantitative indicators for high-risk/high-reward research |
title_full | Quantitative indicators for high-risk/high-reward research Diogo Machado |
title_fullStr | Quantitative indicators for high-risk/high-reward research Diogo Machado |
title_full_unstemmed | Quantitative indicators for high-risk/high-reward research Diogo Machado |
title_short | Quantitative indicators for high-risk/high-reward research |
title_sort | quantitative indicators for high risk high reward research |
topic | Science and Technology |
topic_facet | Science and Technology |
url | https://doi.org/10.1787/675cbef6-en |
work_keys_str_mv | AT machadodiogo quantitativeindicatorsforhighriskhighrewardresearch |