Speaking the same language: A machine learning approach to classify skills in Burning Glass Technologies data
This report presents a methodology to classify skill requirements in online job postings into a pre-existing expert-driven taxonomy of broader skill categories. The proposed approach uses a semi-supervised Machine Learning algorithm and relies on the actual meaning and definition of the skills. It a...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , , |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schriftenreihe: | OECD Social, Employment and Migration Working Papers
|
Schlagwörter: | |
Links: | https://doi.org/10.1787/adb03746-en |
Zusammenfassung: | This report presents a methodology to classify skill requirements in online job postings into a pre-existing expert-driven taxonomy of broader skill categories. The proposed approach uses a semi-supervised Machine Learning algorithm and relies on the actual meaning and definition of the skills. It allows for the classification of more than 17 000 unique skill keywords contained in the Burning Glass dataset into 61 categories. The outcome of the classification exercise is validated using O*NET information on skills by occupations, and by benchmarking the results of some empirical descriptive exercises against the existing literature. Compared to a manual classification, the proposed approach organises large amounts of skills information in an analytically tractable form, and with considerable savings in time and human resources |
Umfang: | 1 Online-Ressource (51 Seiten) 21 x 28cm |
DOI: | 10.1787/adb03746-en |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047928025 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220413s2021 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/adb03746-en |2 doi | |
035 | |a (ZDB-13-SOC)072589469 | ||
035 | |a (OCoLC)1312711409 | ||
035 | |a (DE-599)BVBBV047928025 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
100 | 1 | |a Lassébie, Julie |e Verfasser |4 aut | |
245 | 1 | 0 | |a Speaking the same language |b A machine learning approach to classify skills in Burning Glass Technologies data |c Julie Lassébie ... [et al] |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (51 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a OECD Social, Employment and Migration Working Papers | |
520 | |a This report presents a methodology to classify skill requirements in online job postings into a pre-existing expert-driven taxonomy of broader skill categories. The proposed approach uses a semi-supervised Machine Learning algorithm and relies on the actual meaning and definition of the skills. It allows for the classification of more than 17 000 unique skill keywords contained in the Burning Glass dataset into 61 categories. The outcome of the classification exercise is validated using O*NET information on skills by occupations, and by benchmarking the results of some empirical descriptive exercises against the existing literature. Compared to a manual classification, the proposed approach organises large amounts of skills information in an analytically tractable form, and with considerable savings in time and human resources | ||
650 | 4 | |a Social Issues/Migration/Health | |
650 | 4 | |a Employment | |
700 | 1 | |a Marcolin, Luca |4 ctb | |
700 | 1 | |a Vandeweyer, Marieke |4 ctb | |
700 | 1 | |a Vignal, Benjamin |4 ctb | |
856 | 4 | 0 | |u https://doi.org/10.1787/adb03746-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033309518 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2624392 |
---|---|
_version_ | 1821940736538443776 |
adam_text | |
any_adam_object | |
author | Lassébie, Julie |
author2 | Marcolin, Luca Vandeweyer, Marieke Vignal, Benjamin |
author2_role | ctb ctb ctb |
author2_variant | l m lm m v mv b v bv |
author_facet | Lassébie, Julie Marcolin, Luca Vandeweyer, Marieke Vignal, Benjamin |
author_role | aut |
author_sort | Lassébie, Julie |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV047928025 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)072589469 (OCoLC)1312711409 (DE-599)BVBBV047928025 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/adb03746-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047928025</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220413s2021 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/adb03746-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)072589469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1312711409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047928025</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lassébie, Julie</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speaking the same language</subfield><subfield code="b">A machine learning approach to classify skills in Burning Glass Technologies data</subfield><subfield code="c">Julie Lassébie ... [et al]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (51 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">OECD Social, Employment and Migration Working Papers</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This report presents a methodology to classify skill requirements in online job postings into a pre-existing expert-driven taxonomy of broader skill categories. The proposed approach uses a semi-supervised Machine Learning algorithm and relies on the actual meaning and definition of the skills. It allows for the classification of more than 17 000 unique skill keywords contained in the Burning Glass dataset into 61 categories. The outcome of the classification exercise is validated using O*NET information on skills by occupations, and by benchmarking the results of some empirical descriptive exercises against the existing literature. Compared to a manual classification, the proposed approach organises large amounts of skills information in an analytically tractable form, and with considerable savings in time and human resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Issues/Migration/Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Employment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcolin, Luca</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vandeweyer, Marieke</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vignal, Benjamin</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/adb03746-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033309518</subfield></datafield></record></collection> |
id | DE-604.BV047928025 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T15:45:07Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033309518 |
oclc_num | 1312711409 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (51 Seiten) 21 x 28cm |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
series2 | OECD Social, Employment and Migration Working Papers |
spellingShingle | Lassébie, Julie Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data Social Issues/Migration/Health Employment |
title | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data |
title_auth | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data |
title_exact_search | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data |
title_full | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data Julie Lassébie ... [et al] |
title_fullStr | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data Julie Lassébie ... [et al] |
title_full_unstemmed | Speaking the same language A machine learning approach to classify skills in Burning Glass Technologies data Julie Lassébie ... [et al] |
title_short | Speaking the same language |
title_sort | speaking the same language a machine learning approach to classify skills in burning glass technologies data |
title_sub | A machine learning approach to classify skills in Burning Glass Technologies data |
topic | Social Issues/Migration/Health Employment |
topic_facet | Social Issues/Migration/Health Employment |
url | https://doi.org/10.1787/adb03746-en |
work_keys_str_mv | AT lassebiejulie speakingthesamelanguageamachinelearningapproachtoclassifyskillsinburningglasstechnologiesdata AT marcolinluca speakingthesamelanguageamachinelearningapproachtoclassifyskillsinburningglasstechnologiesdata AT vandeweyermarieke speakingthesamelanguageamachinelearningapproachtoclassifyskillsinburningglasstechnologiesdata AT vignalbenjamin speakingthesamelanguageamachinelearningapproachtoclassifyskillsinburningglasstechnologiesdata |