It's all analytics - part II: designing an integrated AI, analytics and data science architectures for your organization
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton ; London ; New York
Routledge, Taylor & Francis Group
2022
|
Ausgabe: | First published |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033219583&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXXV, 265 Seiten Diagramme |
ISBN: | 9781032066813 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047836419 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 220214s2022 xx |||| |||| 00||| eng d | ||
020 | |a 9781032066813 |9 978-1-032-06681-3 | ||
035 | |a (OCoLC)1298743654 | ||
035 | |a (DE-599)BVBBV047836419 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Burk, Scott |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1251791255 |4 aut | |
245 | 1 | 0 | |a It's all analytics - part II |b designing an integrated AI, analytics and data science architectures for your organization |c Scott Burk, Ph.D., David E. Sweenor, Gary D. Miner, Ph.D. |
250 | |a First published | ||
264 | 1 | |a Boca Raton ; London ; New York |b Routledge, Taylor & Francis Group |c 2022 | |
300 | |a XXXV, 265 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sweenor, David E. |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1251791751 |4 aut | |
700 | 1 | |a Miner, Gary |d 1942- |e Verfasser |0 (DE-588)140491813 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-0-429-34395-7 |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033219583&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033219583 |
Datensatz im Suchindex
_version_ | 1819303325322969088 |
---|---|
adam_text | Contents Foreword and Tribute to the Authors....................................................... xv Preface..............................................................................................................xvii Authors..............................................................................................................xxi SECTION I 1 DESIGNING FOR ORGANIZATIONAL SUCCESS Some Say It Starts with Data—It Doesn’t.......................................... 3 Introduction....................................................................................................3 Organizational Alignment.............................................................................4 Start with the End in Mind...................................................................... 4 Remove the Cultural Divide and Establish a Center of Excellence...... 9 Innovation-Oriented Cultures.................................................................12 CoE Team Structure................................................................................ 13 Full Service Team Members................................................................13 Functionally Oriented Team Members.............................................. 14 Data and Analytic Project Team Roles.................................................. 14 Data and Analytics Literacy........................................................................ 15 What Is Data Literacy? Data Literacy vs Analytics Literacy...................15 Designing the Organization for Program Success.................................16
Analytics Success Involves More than Technology...................................18 People and Process - Not Merely Technology......................................18 Ethics........................................................................................................ 19 Governance............................................................................................. 20 Technology...................................................................................................20 Data and Analytics Platform Service Areas...........................................20 Data and Analytics Architecture............................................................ 20 Summary......................................................................................................22 References....................................................................................................22 Additional Resources................................................................................... 23
vi ■ Contents 2 The Anatomy of a Business Decision............................................25 The Anatomy of a Business Decision........................................................25 What Is a Business Decision?.................................................................27 The Value of a Decision Which Uses Data and Analytics?................. 28 Before Analytics.................................................................................. 29 After Analytics..................................................................................... 29 Types of Decisions.................................................................................. 30 Strategic Decisions............................................................................... 31 Tactical Decisions................................................................................ 31 Operational Decisions......................................................................... 31 Human vs. Automated Decisions...........................................................32 Speed Is Everything................................................................................ 34 Well Why Does It Matter?....................................................................... 35 Summary......................................................................................................37 References....................................................................................................37 3 Trustworthy AI................................................................................. 39
Introduction..................................................................................................39 Don’t Be Creepy - Be Fair, Unbiased, Explainable, and Transparent.......................................................................................... 40 Creepiness................................................................................................40 Fairness and Bias.................................................................................... 41 Explainable and Transparent..................................................................42 Ethics............................................................................................................42 Framework for Trustworthy Analytics....................................................... 44 Ethical Foundations for Trustworthy AI................................................ 45 Key Requirements for Trustworthy AI.................................................. 48 Other AI Ethical Frameworks..................................................................... 50 Summary...................................................................................................... 51 References.................................................................................................... 51 Additional Resources....................................................................................52 SECTION II DESIGNING FOR DATA SUCCESS 4 Data Design for Success...................................................................55
Introduction.................................................................................................. 55 Why Is Data So Important?......................................................................... 58 Data Is the Cornerstone of Improvement............................................. 58 Processes Are Everywhere...................................................................... 59 The Problem - Issues with Data Continue to Persist.......................... 59
Contents ■ vii Firms Are Failing to Be Data Driven..................................................... 60 Data and Analytics Explosion.................................................................61 On a Personal Note..................................................................................... 62 The Potential of Data=Analytics............................................................... 63 Framework for Data and Analytics - Some Fundamentals..................... 64 The Typical Story of Data Growth, Data Complexity, and Data Needs.......................................................................................64 Data Volume........................................................................................ 68 Data Variety......................................................................................... 68 Data Velocity....................................................................................... 69 Data Value........................................................................................... 69 Data Veracity....................................................................................... 69 The Pieces Are Interdependent and Circular - Keep Looking Forward for Next Generation Data........................................................ 69 The Value of Data and Analytics............................................................... 70 Data and Analytics Literacy Are Requirements to Successful Programs......................................................................................................72
Summary......................................................................................................73 How This Part Is Organized...............................................................74 References....................................................................................................74 Additional Resources................................................................................... 75 Data and Analytics Literacy References.................................................75 Additional Terms Related to This Chapter............................................76 Process and Data Quality References.................................................... 76 5 Data in Motion, Data Pipes, APIs, Microservices, Streaming, Events, and More..........................................................77 Introduction................................................................................................. 77 APIs and Microservices...............................................................................80 The Five Architectural Constraints of REST APIs................................ 82 Other APIs - RPC and SOAP................................................................. 83 API Benefits and Drawbacks................................................................. 84 Benefits (Primarily to Developers).....................................................84 Drawbacks........................................................................................... 84
Microservices............................................................................................... 85 Microservice Benefits and Drawbacks..................................................86 Benefits................................................................................................ 86 Drawbacks........................................................................................... 87 Events, Event-Driven Architectures and Streaming................................. 87
viii ■ Contents Some Drivers and Examples of Events, Streaming Events, and CEP (Complex Event Processing)....................................................... 90 IoT Is a Big Driver of Real-Time Events................................................ 90 Event Processing Advantages......................................................................92 How Businesses Benefit from Event Processing...................................93 Improved Customer Service................................................................94 Reduction of Costs and More Efficient Use of Resources................94 Optimized Operations........................................................................94 ETL and ELT.................................................................................................95 Summary......................................................................................................96 References....................................................................................................97 Additional Resources................................................................................... 97 Basic Terms Useful in This Chapter...................................................... 97 Additional Relevant Terms......................................................................97 6 Data Stores, Warehouses, Big Data, Lakes, and Cloud Data......99 Introduction..................................................................................................99 Why Data Is so Crucial to the Success of an Enterprise........................ 101 Data
Storage - Two Designations - Volatile and Nonvolatile Memory...................................................................................................... 103 Primer on Data Structures and Formats...................................................104 Data Stores Topology.................................................................................105 Local File Systems and Network Data Storage.................................... 106 Operational Data Stores........................................................................ 107 Data Marts and the EDWs..................................................................... 108 Benefits and Drawbacks of the EDW...................................................109 Benefits of an EDW........................................................................... 109 Drawbacks of an EDW...................................................................... 109 Cluster Computing and Big Data.............................................................. Ill What Is Big Data?................................................................................... Ill Big Data as a Concept........................................................................Ill Big Data as a Technology......................................................................112 Why the Push to Big Data? Why Is Big Data Technology Attractive for Data Science?................................................................... 113 Pivotal Changes in Big Data Technology............................................. 114 Optimized Big
Data............................................................................... 117 Cloud Data - What It Is, What You Can Do, Benefits, and Drawbacks.............................................................................................. 117 Cloud Benefits and Drawbacks............................................................ 118
Contents ■ ix Cloud Storage....................................................................................120 “Other Big Data Promises”, Data Lakes, Data Swamps, Reservoirs, Muddy Water, Analytic Sandboxes, and Whatever We Can Think to Call It Tomorrow............................................................................... 120 Summary.................................................................................................... 121 References.................................................................................................. 121 Additional Resources................................................................................. 122 Data Lakes and Architecture.................................................................... 122 Some Terms to Consider Exploring..................................................... 123 7 Data Virtualization........................................................................ 125 Introduction................................................................................................ 125 The Typical Story of Data Growth, Data Complexity, and Data Needs......................................................................................126 DV- What Is It?.........................................................................................127 A Platform Connecting to Hundreds of Data Sources.......................128 A Platform with Searchable Data and Rich Metadata........................128 A Collaboration Tool for Functional Areas and Users.......................129 A Pathway for New Systems and
System Migration............................129 An IT Tool for Rapid Prototyping.........................................................129 A System for Enhanced Security of Data............................................ 129 The Continuing Quest for the “Single Versions of the Truth” Motivation beyond the EDW................................................................ 131 What Are the Advantages of DV?........................................................ 134 A Sustainable Architecture for the Ever-Increasing Complexity of Data........................................................................... 134 Simplified User Experience...............................................................136 More Collaborative and Productive User Experience.................... 136 Data in Near Real Time..................................................................... 136 Source Data and Combine Data Easily............................................ 137 No Need to Replicate and Make Physical Copies of Data............ 137 Improved Security and Administration........................................... 137 Positive Impact on the EDW, IT, and the Business........................137 Governance and Data Quality..........................................................137 DV Is Scalable - Scales Up and Scales Out....................................138 Enabling Future Data and Even Technology...................................138 What Are the Drawbacks of DV?..........................................................140 Some of the Major Disadvantages of
DV......................................... 140 Are You Ready for DV?......................................................................... 142
x ■ Contents Summary.................................................................................................... 142 References.................................................................................................. 142 Additional Resources..................................................................................143 8 Data Governance and Data Management........................................145 Introduction................................................................................................ 145 Data Governance - Policies, Procedure, and Process............................ 146 Goals of Data Governance....................................................................... 148 Data Integrity.......................................................................................... 150 Data Security.......................................................................................... 150 Data Consistency.................................................................................... 151 Data Confidence..................................................................................... 151 Compliance to Regulations, Data Privacy Laws...................................151 Adherence to Organizational Ethics and Standards............................ 152 Risk Management of Data Leakage...................................................... 152 Data Distribution.................................................................................... 152 Value of Good
Data...............................................................................153 Moving Data Quality Upstream Reduces Costs.................................. 153 Data Literacy Education.........................................................................154 Technology to Support Data Management and Governance.................154 Data Management..................................................................................154 Master Data............................................................................................ 155 Reference Data....................................................................................... 156 Data Quality........................................................................................... 156 Security................................................................................................... 157 Summary.................................................................................................... 158 References.................................................................................................. 158 Additional Resources..................................................................................158 Some Terms Related to This Chapter to Consider Exploring.............159 Data Quality Resource...........................................................................159 9 Miscellanea - Curated, Purchased, Nascent, and Future Data..................................................................................... 161
Introduction................................................................................................ 161 Data Outside Your Organization.............................................................. 162 Supplemental Data.................................................................................163 Meaningful Data..................................................................................... l63 Data for Free.............................................................................................. 164 Publically Available Data.......................................................................l65 Data Available from Commercial Entities and Universities....................165
Contents ■ xi Data for Sale............................................................................................... 167 Data Syndicators.....................................................................................168 Data Brokers...........................................................................................168 Data Exchange and Data Exchange Platforms.................................... 169 Data Marketplaces................................................................................. 169 Should You Monetize Your Data?............................................................. 170 Future Data................................................................................................ 170 Keep an Eye Out for Nascent Technologies and Trends in Applications of Analytics.................................................................. 171 GIS and Geo Analytics.......................................................................... 171 Graph Databases....................................................................................171 Time Series Databases.......................................................................... 172 Today Is the Time to Start Collecting Data for the Future................ 172 Data Strategy and Data Paradigms.......................................................173 Summary.................................................................................................... 174 References.................................................................................................. 174 Additional
Resources..................................................................................175 What Is DataOps?...................................................................................175 SECTION III 10 DESIGNING FOR ANALYTICS SUCCESS Technology to Create Analytics.................................................................179 Introduction................................................................................................ 179 Analytics Maturity..................................................................................... 180 Architectural Considerations for the Data Scientist................................186 Data Discovery and Acquisition.......................................................... 188 Exploratory Data Analysis..................................................................... 189 Data Preparation....................................................................................190 Feature Engineering.............................................................................. 190 Model Build and Selection....................................................................190 Model Evaluation and Testing............................................................... 191 Model Deployment.................................................................................191 Model Monitoring...................................................................................192 Legality and Ethical Use of Data..........................................................192 Automation and
ML.................................................................................. 192 The Real World is Different than University........................................... 193 Do You Know How to Bake Bread?........................................................196 Analytical Capabilities and Architectural Considerations.......................197 Data Management as a Prerequisite.................................................... 198
xii ■ Contents Starting with the Data....................................................................... 198 Starting with the Analytics................................................................ 199 Data and Analytics Architecture........................................................... 199 Data Sources.......................................................................................199 Data Management............................................................................. 201 Analytics.................................................................................................202 Model Building.................................................................................. 202 Reporting and Dashboards...............................................................202 Data Science...................................................................................... 203 AI, ML, Deep Learning - Oh My!.................................................... 204 Model Training.................................................................................. 206 Model Inference................................................................................ 207 Model Management........................................................................... 208 Governance....................................................................................... 208 Streaming Analytics................................................................................210 IoT and Edge Analytics......................................................................... 210
Cloud Ecosystems and Frameworks.....................................................212 A Few Example Architectures.................................................................. 212 Uber........................................................................................................ 212 Facebook................................................................................................ 214 An Evolution of CRISP-DM................................................................... 214 Feature Stores............................................................................................. 214 Technology................................................................................................. 219 Cost Considerations...................................................................................219 Other Open Source Considerations......................................................221 Technical Debt in Data Scienceand ML...................................................222 Model Dependencies............................................................................ 222 Data Dependencies............................................................................... 223 Feedback................................................................................................223 Anti-patterns or Poor CodingHabits.....................................................223 Summary.................................................................................................... 224
References.................................................................................................. 225 Additional Resources................................................................................. 227 11 Technology to Communicateand Act Upon Analytics............... 229 Introduction................................................................................................229 An Analytics Confluence.......................................................................... 230 Data Storytelling.........................................................................................231 Building an Analytics Culture................................................................... 235
Contents ■ xiii Model Ops.................................................................................................. 236 How Is Analytics Different?..................................................................236 Why Does an Organization Need Model Ops?...................................238 Model Ops Capabilities......................................................................... 239 Model Visibility.................................................................................. 239 Model Repository.............................................................................. 239 Model Performance Metrics............................................................. 240 Contextualized Collaboration Framework.......................................241 Governance........................................................................................241 Summary.................................................................................................... 241 References..................................................................................................242 Additional Resources................................................................................. 243 Keywords...................................................................................................243 12 To Build, Buy, or Outsource Analytics Platform.......................245 Introduction................................................................................................243 Analytics Infrastructure Components......................................................
246 What Really Matters (In Your Business)?................................................. 248 Build vs. Buy Considerations....................................................................249 Strategy and Competitive Advantage................................................... 249 Costs....................................................................................................... 249 Scale and Complexity........................................................................... 250 Commoditization, Flexibility, and Change.......................................... 250 Time........................................................................................................ 250 In-House Expertise............................................................................... 251 Risks........................................................................................................ 251 Support Structure.................................................................................. 252 Operational Factors............................................................................... 252 Intellectual Property.............................................................................. 252 Outsourcing................................................................................................252 Build vs. Buy vs. Outsource Guidelines.................................................. 252 Summary.................................................................................................... 253
References..................................................................................................254 Additional Resources................................................................................. 254 Index 255
|
any_adam_object | 1 |
author | Burk, Scott ca. 20./21. Jh Sweenor, David E. ca. 20./21. Jh Miner, Gary 1942- |
author_GND | (DE-588)1251791255 (DE-588)1251791751 (DE-588)140491813 |
author_facet | Burk, Scott ca. 20./21. Jh Sweenor, David E. ca. 20./21. Jh Miner, Gary 1942- |
author_role | aut aut aut |
author_sort | Burk, Scott ca. 20./21. Jh |
author_variant | s b sb d e s de des g m gm |
building | Verbundindex |
bvnumber | BV047836419 |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)1298743654 (DE-599)BVBBV047836419 |
discipline | Informatik |
edition | First published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01910nam a2200409 c 4500</leader><controlfield tag="001">BV047836419</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220214s2022 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032066813</subfield><subfield code="9">978-1-032-06681-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1298743654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047836419</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burk, Scott</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1251791255</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">It's all analytics - part II</subfield><subfield code="b">designing an integrated AI, analytics and data science architectures for your organization</subfield><subfield code="c">Scott Burk, Ph.D., David E. Sweenor, Gary D. Miner, Ph.D.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">Routledge, Taylor & Francis Group</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 265 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sweenor, David E.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1251791751</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miner, Gary</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140491813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-0-429-34395-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033219583&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033219583</subfield></datafield></record></collection> |
id | DE-604.BV047836419 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:29:46Z |
institution | BVB |
isbn | 9781032066813 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033219583 |
oclc_num | 1298743654 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | XXXV, 265 Seiten Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Routledge, Taylor & Francis Group |
record_format | marc |
spellingShingle | Burk, Scott ca. 20./21. Jh Sweenor, David E. ca. 20./21. Jh Miner, Gary 1942- It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization Maschinelles Lernen (DE-588)4193754-5 gnd Data Science (DE-588)1140936166 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1140936166 (DE-588)4033447-8 |
title | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization |
title_auth | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization |
title_exact_search | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization |
title_full | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization Scott Burk, Ph.D., David E. Sweenor, Gary D. Miner, Ph.D. |
title_fullStr | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization Scott Burk, Ph.D., David E. Sweenor, Gary D. Miner, Ph.D. |
title_full_unstemmed | It's all analytics - part II designing an integrated AI, analytics and data science architectures for your organization Scott Burk, Ph.D., David E. Sweenor, Gary D. Miner, Ph.D. |
title_short | It's all analytics - part II |
title_sort | it s all analytics part ii designing an integrated ai analytics and data science architectures for your organization |
title_sub | designing an integrated AI, analytics and data science architectures for your organization |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Data Science (DE-588)1140936166 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Maschinelles Lernen Data Science Künstliche Intelligenz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033219583&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT burkscott itsallanalyticspartiidesigninganintegratedaianalyticsanddatasciencearchitecturesforyourorganization AT sweenordavide itsallanalyticspartiidesigninganintegratedaianalyticsanddatasciencearchitecturesforyourorganization AT minergary itsallanalyticspartiidesigninganintegratedaianalyticsanddatasciencearchitecturesforyourorganization |