Characters of groups and lattices over orders: from ordinary to integral representation theory
This is the fi rst textbook leading coherently from classical character theory to the theory of lattices over orders and integral representations of fi nite groups. Character theory is developed in a highly pedagogical way including many examples and exercises covering at once the fi rst defi nition...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Schriftenreihe: | De Gruyter textbook
|
Schlagwörter: | |
Links: | https://doi.org/10.1515/9 83110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 https://doi.org/10.1515/9783110702446 |
Zusammenfassung: | This is the fi rst textbook leading coherently from classical character theory to the theory of lattices over orders and integral representations of fi nite groups. Character theory is developed in a highly pedagogical way including many examples and exercises covering at once the fi rst defi nitions up to Clifford theory, Brauer's induction theorem and the splitting fi eld theorem, as well as self-dual simple modules allowing bilinear forms. This latter part is done step by step using the approach given by Sin and Willems. Dirichlet characters and Dirichlet's result on primes in arithmetic progressions are given as an application. Examples of integral representations of fi nite groups are already detailed at a quite early stage where appropriate, so that the more systematic treatment of lattices over orders is natural. After that, the necessary number theory and homological algebra is developed as far as needed. Maximal as well as hereditary orders are introduced and the Auslander- Buchsbaum theorem is proved. The Jordan-Zassenhaus theorem on the fi niteness of lattices in a given vector space is fully proved. Then the development and properties of class groups of orders is a fi rst focus. As a further highlight Swan's example of a stably free but not free ideal over the integral group ring of the generalised quaternion group of order 32 is developed in great detail. A student friendly introduction to ordinary representation theory Many examples and exercises, including solutions for some of them, make the book well suited for self-study Leads coherently from ordinary character theory to the integral representation theory of lattices over orders Several topics appear for the fi rst time in a textbook, such as Sin-Willems' approach to self-dual simple modules and Swan's example of a stably free non free ideal |
Umfang: | 1 Online-Ressource (XIII, 357 Seiten) Diagramme |
ISBN: | 9783110702446 9783110702552 |
DOI: | 10.1515/9783110702446 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047825341 | ||
003 | DE-604 | ||
005 | 20250331 | ||
007 | cr|uuu---uuuuu | ||
008 | 220209s2022 xx |||| o|||| 00||| eng d | ||
020 | |a 9783110702446 |c PDF |9 978-3-11-070244-6 | ||
020 | |a 9783110702552 |c EPUB |9 978-3-11-070255-2 | ||
024 | 7 | |a 10.1515/9783110702446 |2 doi | |
035 | |a (ZDB-23-DGG)9783110702446 | ||
035 | |a (OCoLC)1296323748 | ||
035 | |a (DE-599)BVBBV047825341 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-355 |a DE-706 |a DE-91 |a DE-898 |a DE-11 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Zimmermann, Alexander |d 1964- |e Verfasser |0 (DE-588)120028875 |4 aut | |
245 | 1 | 0 | |a Characters of groups and lattices over orders |b from ordinary to integral representation theory |c Alexander Zimmermann |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (XIII, 357 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter textbook | |
520 | |a This is the fi rst textbook leading coherently from classical character theory to the theory of lattices over orders and integral representations of fi nite groups. Character theory is developed in a highly pedagogical way including many examples and exercises covering at once the fi rst defi nitions up to Clifford theory, Brauer's induction theorem and the splitting fi eld theorem, as well as self-dual simple modules allowing bilinear forms. This latter part is done step by step using the approach given by Sin and Willems. Dirichlet characters and Dirichlet's result on primes in arithmetic progressions are given as an application. Examples of integral representations of fi nite groups are already detailed at a quite early stage where appropriate, so that the more systematic treatment of lattices over orders is natural. After that, the necessary number theory and homological algebra is developed as far as needed. Maximal as well as hereditary orders are introduced and the Auslander- Buchsbaum theorem is proved. The Jordan-Zassenhaus theorem on the fi niteness of lattices in a given vector space is fully proved. Then the development and properties of class groups of orders is a fi rst focus. As a further highlight Swan's example of a stably free but not free ideal over the integral group ring of the generalised quaternion group of order 32 is developed in great detail. A student friendly introduction to ordinary representation theory Many examples and exercises, including solutions for some of them, make the book well suited for self-study Leads coherently from ordinary character theory to the integral representation theory of lattices over orders Several topics appear for the fi rst time in a textbook, such as Sin-Willems' approach to self-dual simple modules and Swan's example of a stably free non free ideal | ||
650 | 4 | |a Dirichlet-L-Reihen | |
650 | 4 | |a Gruppendarstellungen | |
650 | 4 | |a Quadratische Formen | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-070243-9 |w (DE-604)BV048210300 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110702446 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033208667 | |
966 | e | |u https://doi.org/10.1515/9 83110702446 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA22 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-355 |p ZDB-23-DGG |q UBR_Pick&Choose 2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110702446 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2653773 |
---|---|
_version_ | 1828152596774256641 |
adam_text | |
any_adam_object | |
author | Zimmermann, Alexander 1964- |
author_GND | (DE-588)120028875 |
author_facet | Zimmermann, Alexander 1964- |
author_role | aut |
author_sort | Zimmermann, Alexander 1964- |
author_variant | a z az |
building | Verbundindex |
bvnumber | BV047825341 |
classification_rvk | SK 260 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110702446 (OCoLC)1296323748 (DE-599)BVBBV047825341 |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110702446 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047825341</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250331</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220209s2022 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110702446</subfield><subfield code="c">PDF</subfield><subfield code="9">978-3-11-070244-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110702552</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-3-11-070255-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110702446</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110702446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296323748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047825341</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zimmermann, Alexander</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120028875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characters of groups and lattices over orders</subfield><subfield code="b">from ordinary to integral representation theory</subfield><subfield code="c">Alexander Zimmermann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 357 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter textbook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the fi rst textbook leading coherently from classical character theory to the theory of lattices over orders and integral representations of fi nite groups. Character theory is developed in a highly pedagogical way including many examples and exercises covering at once the fi rst defi nitions up to Clifford theory, Brauer's induction theorem and the splitting fi eld theorem, as well as self-dual simple modules allowing bilinear forms. This latter part is done step by step using the approach given by Sin and Willems. Dirichlet characters and Dirichlet's result on primes in arithmetic progressions are given as an application. Examples of integral representations of fi nite groups are already detailed at a quite early stage where appropriate, so that the more systematic treatment of lattices over orders is natural. After that, the necessary number theory and homological algebra is developed as far as needed. Maximal as well as hereditary orders are introduced and the Auslander- Buchsbaum theorem is proved. The Jordan-Zassenhaus theorem on the fi niteness of lattices in a given vector space is fully proved. Then the development and properties of class groups of orders is a fi rst focus. As a further highlight Swan's example of a stably free but not free ideal over the integral group ring of the generalised quaternion group of order 32 is developed in great detail. A student friendly introduction to ordinary representation theory Many examples and exercises, including solutions for some of them, make the book well suited for self-study Leads coherently from ordinary character theory to the integral representation theory of lattices over orders Several topics appear for the fi rst time in a textbook, such as Sin-Willems' approach to self-dual simple modules and Swan's example of a stably free non free ideal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet-L-Reihen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gruppendarstellungen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quadratische Formen</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-070243-9</subfield><subfield code="w">(DE-604)BV048210300</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033208667</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9 83110702446</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBR_Pick&Choose 2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110702446</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV047825341 |
illustrated | Not Illustrated |
indexdate | 2025-03-31T16:14:09Z |
institution | BVB |
isbn | 9783110702446 9783110702552 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033208667 |
oclc_num | 1296323748 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-355 DE-BY-UBR DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-11 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-355 DE-BY-UBR DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-11 |
physical | 1 Online-Ressource (XIII, 357 Seiten) Diagramme |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DMA ZDB-23-DMA22 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2022 ZDB-23-DGG UBR_Pick&Choose 2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter textbook |
spellingShingle | Zimmermann, Alexander 1964- Characters of groups and lattices over orders from ordinary to integral representation theory Dirichlet-L-Reihen Gruppendarstellungen Quadratische Formen MATHEMATICS / Group Theory bisacsh |
subject_GND | (DE-588)4123623-3 |
title | Characters of groups and lattices over orders from ordinary to integral representation theory |
title_auth | Characters of groups and lattices over orders from ordinary to integral representation theory |
title_exact_search | Characters of groups and lattices over orders from ordinary to integral representation theory |
title_full | Characters of groups and lattices over orders from ordinary to integral representation theory Alexander Zimmermann |
title_fullStr | Characters of groups and lattices over orders from ordinary to integral representation theory Alexander Zimmermann |
title_full_unstemmed | Characters of groups and lattices over orders from ordinary to integral representation theory Alexander Zimmermann |
title_short | Characters of groups and lattices over orders |
title_sort | characters of groups and lattices over orders from ordinary to integral representation theory |
title_sub | from ordinary to integral representation theory |
topic | Dirichlet-L-Reihen Gruppendarstellungen Quadratische Formen MATHEMATICS / Group Theory bisacsh |
topic_facet | Dirichlet-L-Reihen Gruppendarstellungen Quadratische Formen MATHEMATICS / Group Theory Lehrbuch |
url | https://doi.org/10.1515/9783110702446 |
work_keys_str_mv | AT zimmermannalexander charactersofgroupsandlatticesoverordersfromordinarytointegralrepresentationtheory |