Machine Learning in Industrial Applications: Insights Gained from Selected Studies:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Hochschulschrift/Dissertation Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Erlangen ; Nürnberg
2022
|
Schlagwörter: | |
Links: | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-179485 https://d-nb.info/1250500753/34 https://open.fau.de/handle/openfau/17948 |
Umfang: | 1 Online-Ressource (xix, 302 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047813280 | ||
003 | DE-604 | ||
005 | 20220223 | ||
007 | cr|uuu---uuuuu | ||
008 | 220203s2022 gw a||| om||| 00||| eng d | ||
015 | |a 22,O02 |2 dnb | ||
016 | 7 | |a 1250500753 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-179485 |2 urn | |
035 | |a (OCoLC)1296320756 | ||
035 | |a (DE-599)DNB1250500753 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 |a DE-862 | ||
084 | |8 1\p |a 006.31 |2 23ksdnb | ||
084 | |8 2\p |a 004 |2 23sdnb | ||
100 | 1 | |a Schmitz, Markus |0 (DE-588)1250940125 |4 aut | |
245 | 1 | 0 | |a Machine Learning in Industrial Applications: Insights Gained from Selected Studies |c vorgelegt von Markus Schmitz |
246 | 1 | 3 | |a Maschinelles Lernen in industriellen Anwendungen: Erkenntnisse aus ausgewählten Studien |
264 | 1 | |a Erlangen ; Nürnberg |c 2022 | |
300 | |a 1 Online-Ressource (xix, 302 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2021 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überwachtes Lernen |0 (DE-588)4580264-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Industrie |0 (DE-588)4026779-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |8 4\p |a Machine learning |0 (DLC)sh85079324 |0 http://id.loc.gov/authorities/subjects/sh85079324 |2 lcsh |
653 | |a Machine Learning | ||
653 | |a Deep Learning | ||
653 | |a Industrial Machine Learning | ||
653 | |a Artificial Intelligence | ||
653 | |a Machine Teaching | ||
653 | |a Design Science Research | ||
653 | |a Industrial Information Systems | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Überwachtes Lernen |0 (DE-588)4580264-6 |D s |
689 | 0 | 2 | |a Industrie |0 (DE-588)4026779-9 |D s |
689 | 0 | 3 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-179485 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1250500753/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/17948 |x Verlag |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a aepkn |c 0,89367 |d 20220129 |q DE-101 |u https://d-nb.info/provenance/plan#aepkn | |
883 | 0 | |8 2\p |a aepsg |c 0,96902 |d 20220129 |q DE-101 |u https://d-nb.info/provenance/plan#aepsg | |
883 | 1 | |8 3\p |a npi |d 20220128 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
883 | 0 | |8 4\p |a aeplcsh |c 0,03571 |d 20220129 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033196741 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2609492 |
---|---|
_version_ | 1823989086885511168 |
adam_text | |
any_adam_object | |
author | Schmitz, Markus |
author_GND | (DE-588)1250940125 |
author_facet | Schmitz, Markus |
author_role | aut |
author_sort | Schmitz, Markus |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV047813280 |
collection | ebook |
ctrlnum | (OCoLC)1296320756 (DE-599)DNB1250500753 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV047813280</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220223</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220203s2022 gw a||| om||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,O02</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1250500753</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-179485</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296320756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1250500753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">006.31</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmitz, Markus</subfield><subfield code="0">(DE-588)1250940125</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning in Industrial Applications: Insights Gained from Selected Studies</subfield><subfield code="c">vorgelegt von Markus Schmitz</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Maschinelles Lernen in industriellen Anwendungen: Erkenntnisse aus ausgewählten Studien</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 302 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2021</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überwachtes Lernen</subfield><subfield code="0">(DE-588)4580264-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Industrie</subfield><subfield code="0">(DE-588)4026779-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Machine learning</subfield><subfield code="0">(DLC)sh85079324</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Teaching</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Design Science Research</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial Information Systems</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Überwachtes Lernen</subfield><subfield code="0">(DE-588)4580264-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Industrie</subfield><subfield code="0">(DE-588)4026779-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-179485</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1250500753/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/17948</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">aepkn</subfield><subfield code="c">0,89367</subfield><subfield code="d">20220129</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepkn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">aepsg</subfield><subfield code="c">0,96902</subfield><subfield code="d">20220129</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepsg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20220128</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,03571</subfield><subfield code="d">20220129</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033196741</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047813280 |
illustrated | Illustrated |
indexdate | 2025-02-13T09:00:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033196741 |
oclc_num | 1296320756 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 DE-862 DE-BY-FWS |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (xix, 302 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spellingShingle | Schmitz, Markus Machine Learning in Industrial Applications: Insights Gained from Selected Studies Künstliche Intelligenz (DE-588)4033447-8 gnd Überwachtes Lernen (DE-588)4580264-6 gnd Deep Learning (DE-588)1135597375 gnd Industrie (DE-588)4026779-9 gnd 4\p Machine learning (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
subject_GND | (DE-588)4033447-8 (DE-588)4580264-6 (DE-588)1135597375 (DE-588)4026779-9 (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 (DE-588)4113937-9 |
title | Machine Learning in Industrial Applications: Insights Gained from Selected Studies |
title_alt | Maschinelles Lernen in industriellen Anwendungen: Erkenntnisse aus ausgewählten Studien |
title_auth | Machine Learning in Industrial Applications: Insights Gained from Selected Studies |
title_exact_search | Machine Learning in Industrial Applications: Insights Gained from Selected Studies |
title_full | Machine Learning in Industrial Applications: Insights Gained from Selected Studies vorgelegt von Markus Schmitz |
title_fullStr | Machine Learning in Industrial Applications: Insights Gained from Selected Studies vorgelegt von Markus Schmitz |
title_full_unstemmed | Machine Learning in Industrial Applications: Insights Gained from Selected Studies vorgelegt von Markus Schmitz |
title_short | Machine Learning in Industrial Applications: Insights Gained from Selected Studies |
title_sort | machine learning in industrial applications insights gained from selected studies |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Überwachtes Lernen (DE-588)4580264-6 gnd Deep Learning (DE-588)1135597375 gnd Industrie (DE-588)4026779-9 gnd 4\p Machine learning (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
topic_facet | Künstliche Intelligenz Überwachtes Lernen Deep Learning Industrie Machine learning Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-179485 https://d-nb.info/1250500753/34 https://open.fau.de/handle/openfau/17948 |
work_keys_str_mv | AT schmitzmarkus machinelearninginindustrialapplicationsinsightsgainedfromselectedstudies AT schmitzmarkus maschinelleslerneninindustriellenanwendungenerkenntnisseausausgewahltenstudien |