Artificial Neural Networks and Evolutionary Computation in Remote Sensing:
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimens...
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2021
|
Links: | https://directory.doabooks.org/handle/20.500.12854/68306 |
Zusammenfassung: | Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification. |
Umfang: | 1 Online-Ressource |
ISBN: | 9783039438280 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047586057 | ||
003 | DE-604 | ||
005 | 20241206 | ||
007 | cr|uuu---uuuuu | ||
008 | 211112s2021 xx o|||| 00||| eng d | ||
020 | |a 9783039438280 |c Online, PDF |9 978-3-03943-828-0 | ||
024 | 7 | |a 10.3390/books978-3-03943-828-0 |2 doi | |
035 | |a (OCoLC)1286873371 | ||
035 | |a (DE-599)BVBBV047586057 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-210 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1028 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-861 |a DE-863 |a DE-862 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
245 | 1 | 0 | |a Artificial Neural Networks and Evolutionary Computation in Remote Sensing |c Edited by: Taskin Kavzoglu |
264 | 1 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2021 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification. | ||
700 | 1 | |a Kavzoglu, Taskin |0 (DE-588)135046841X |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-3-03943-827-3 |
856 | 4 | 0 | |u https://directory.doabooks.org/handle/20.500.12854/68306 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-94-OAB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032971344 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2597859 |
---|---|
_version_ | 1822086401051590656 |
adam_text | |
any_adam_object | |
author2 | Kavzoglu, Taskin |
author2_role | edt |
author2_variant | t k tk |
author_GND | (DE-588)135046841X |
author_facet | Kavzoglu, Taskin |
building | Verbundindex |
bvnumber | BV047586057 |
collection | ZDB-94-OAB |
ctrlnum | (OCoLC)1286873371 (DE-599)BVBBV047586057 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV047586057</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241206</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211112s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783039438280</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-3-03943-828-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/books978-3-03943-828-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1286873371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047586057</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial Neural Networks and Evolutionary Computation in Remote Sensing</subfield><subfield code="c">Edited by: Taskin Kavzoglu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kavzoglu, Taskin</subfield><subfield code="0">(DE-588)135046841X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-03943-827-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://directory.doabooks.org/handle/20.500.12854/68306</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-94-OAB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032971344</subfield></datafield></record></collection> |
id | DE-604.BV047586057 |
illustrated | Not Illustrated |
indexdate | 2025-01-23T23:02:12Z |
institution | BVB |
isbn | 9783039438280 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032971344 |
oclc_num | 1286873371 |
open_access_boolean | 1 |
owner | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-94-OAB |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | MDPI - Multidisciplinary Digital Publishing Institute |
record_format | marc |
spellingShingle | Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
title | Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
title_auth | Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
title_exact_search | Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
title_full | Artificial Neural Networks and Evolutionary Computation in Remote Sensing Edited by: Taskin Kavzoglu |
title_fullStr | Artificial Neural Networks and Evolutionary Computation in Remote Sensing Edited by: Taskin Kavzoglu |
title_full_unstemmed | Artificial Neural Networks and Evolutionary Computation in Remote Sensing Edited by: Taskin Kavzoglu |
title_short | Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
title_sort | artificial neural networks and evolutionary computation in remote sensing |
url | https://directory.doabooks.org/handle/20.500.12854/68306 |
work_keys_str_mv | AT kavzoglutaskin artificialneuralnetworksandevolutionarycomputationinremotesensing |