Modern dimension reduction:
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsuper...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/9781108981767 https://doi.org/10.1017/9781108981767 https://doi.org/10.1017/9781108981767 |
Zusammenfassung: | Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github |
Beschreibung: | Title from publisher's bibliographic system (viewed on 26 Jul 2021) |
Umfang: | 1 Online-Ressource (86 Seiten) |
ISBN: | 9781108981767 |
DOI: | 10.1017/9781108981767 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047451608 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210902s2021 xx o|||| 00||| eng d | ||
020 | |a 9781108981767 |c Online |9 978-1-108-98176-7 | ||
024 | 7 | |a 10.1017/9781108981767 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108981767 | ||
035 | |a (OCoLC)1268194033 | ||
035 | |a (DE-599)BVBBV047451608 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 530.8 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 650 |0 (DE-625)143687: |2 rvk | ||
100 | 1 | |a Waggoner, Philip D. |d ca. 20./21. Jh. |0 (DE-588)1228365040 |4 aut | |
245 | 1 | 0 | |a Modern dimension reduction |c Philip D. Waggoner |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (86 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 26 Jul 2021) | ||
520 | |a Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github | ||
650 | 4 | |a Dimension reduction (Statistics) | |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computational social science |0 (DE-588)1249405939 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | 3 | |a Computational social science |0 (DE-588)1249405939 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-98689-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108981767 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032853589 | |
966 | e | |u https://doi.org/10.1017/9781108981767 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108981767 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818988272441884672 |
---|---|
any_adam_object | |
author | Waggoner, Philip D. ca. 20./21. Jh |
author_GND | (DE-588)1228365040 |
author_facet | Waggoner, Philip D. ca. 20./21. Jh |
author_role | aut |
author_sort | Waggoner, Philip D. ca. 20./21. Jh |
author_variant | p d w pd pdw |
building | Verbundindex |
bvnumber | BV047451608 |
classification_rvk | ST 301 ST 650 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108981767 (OCoLC)1268194033 (DE-599)BVBBV047451608 |
dewey-full | 530.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.8 |
dewey-search | 530.8 |
dewey-sort | 3530.8 |
dewey-tens | 530 - Physics |
discipline | Physik Informatik |
doi_str_mv | 10.1017/9781108981767 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03125nam a2200517zc 4500</leader><controlfield tag="001">BV047451608</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210902s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108981767</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-98176-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108981767</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108981767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268194033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047451608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 650</subfield><subfield code="0">(DE-625)143687:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waggoner, Philip D.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1228365040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern dimension reduction</subfield><subfield code="c">Philip D. Waggoner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (86 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 26 Jul 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension reduction (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computational social science</subfield><subfield code="0">(DE-588)1249405939</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Computational social science</subfield><subfield code="0">(DE-588)1249405939</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-98689-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108981767</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032853589</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981767</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108981767</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047451608 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:19:57Z |
institution | BVB |
isbn | 9781108981767 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032853589 |
oclc_num | 1268194033 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (86 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Waggoner, Philip D. ca. 20./21. Jh. (DE-588)1228365040 aut Modern dimension reduction Philip D. Waggoner Cambridge Cambridge University Press 2021 1 Online-Ressource (86 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 26 Jul 2021) Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github Dimension reduction (Statistics) Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Computational social science (DE-588)1249405939 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Datenverarbeitung (DE-588)4011152-0 s R Programm (DE-588)4705956-4 s Computational social science (DE-588)1249405939 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-108-98689-2 https://doi.org/10.1017/9781108981767 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Waggoner, Philip D. ca. 20./21. Jh Modern dimension reduction Dimension reduction (Statistics) Datenverarbeitung (DE-588)4011152-0 gnd R Programm (DE-588)4705956-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Computational social science (DE-588)1249405939 gnd |
subject_GND | (DE-588)4011152-0 (DE-588)4705956-4 (DE-588)4193754-5 (DE-588)1249405939 |
title | Modern dimension reduction |
title_auth | Modern dimension reduction |
title_exact_search | Modern dimension reduction |
title_full | Modern dimension reduction Philip D. Waggoner |
title_fullStr | Modern dimension reduction Philip D. Waggoner |
title_full_unstemmed | Modern dimension reduction Philip D. Waggoner |
title_short | Modern dimension reduction |
title_sort | modern dimension reduction |
topic | Dimension reduction (Statistics) Datenverarbeitung (DE-588)4011152-0 gnd R Programm (DE-588)4705956-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Computational social science (DE-588)1249405939 gnd |
topic_facet | Dimension reduction (Statistics) Datenverarbeitung R Programm Maschinelles Lernen Computational social science |
url | https://doi.org/10.1017/9781108981767 |
work_keys_str_mv | AT waggonerphilipd moderndimensionreduction |