UAV communications for 5G and beyond:
Gespeichert in:
Weitere beteiligte Personen: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, NJ
Wiley
2021
[Piscataway Township, New Jersey, USA] IEEE Press |
Links: | https://ieeexplore.ieee.org/servlet/opac?bknumber=9295056 https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6422922 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (xxiv, 440 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119575672 9781119575726 9781119575795 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442507 | ||
003 | DE-604 | ||
005 | 20240214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 xx a||| o|||| 00||| eng d | ||
020 | |a 9781119575672 |q PDF |9 978-1-119-57567-2 | ||
020 | |a 9781119575726 |q EPUB |9 978-1-119-57572-6 | ||
020 | |a 9781119575795 |9 9781119575795 | ||
035 | |a (ZDB-30-PQE)EBC6422922 | ||
035 | |a (ZDB-30-PAD)EBC6422922 | ||
035 | |a (ZDB-89-EBL)EBL6422922 | ||
035 | |a (OCoLC)1227389882 | ||
035 | |a (DE-599)BVBBV047442507 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-573 | ||
082 | 0 | |a 629.1355 | |
084 | |a ELT 620 |2 stub | ||
084 | |a VER 593 |2 stub | ||
245 | 1 | 0 | |a UAV communications for 5G and beyond |c edited by Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2021 | |
264 | 1 | |a [Piscataway Township, New Jersey, USA] |b IEEE Press | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (xxiv, 440 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acronyms -- Part I Fundamentals of UAV Communications -- Chapter 1 Overview -- 1.1 UAV Definitions, Classes, and Global Trend -- 1.2 UAV Communication and Spectrum Requirement -- 1.3 Potential Existing Technologies for UAV Communications -- 1.3.1 Direct Link -- 1.3.2 Satellite -- 1.3.3 Ad‐Hoc Network -- 1.3.4 Cellular Network -- 1.4 Two Paradigms in Cellular UAV Communications -- 1.4.1 Cellular‐Connected UAVs -- 1.4.2 UAV‐Assisted Wireless Communications -- 1.5 New Opportunities and Challenges -- 1.5.1 High Altitude -- 1.5.2 High LoS Probability -- 1.5.3 High 3D Mobility -- 1.5.4 SWAP Constraints -- 1.6 Chapter Summary and Main Organization of the Book -- References -- Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 Literature Review on Aerial Propagation -- 2.2.2 Existing Surveys on UAV AG Propagation -- 2.3 UAV AG Propagation Characteristics -- 2.3.1 Comparison of UAV AG and Terrestrial Propagation -- 2.3.2 Frequency Bands for UAV AG Propagation -- 2.3.3 Scattering Characteristics for AG Propagation -- 2.3.4 Antenna Configurations for AG Propagation -- 2.3.5 Doppler Effects -- 2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms -- 2.4.1 Channel Measurement Configurations -- 2.4.2 Challenges in AG Channel Measurements -- 2.4.3 AG Propagation Scenarios -- 2.4.3.1 Open Space -- 2.4.3.2 Hilly/Mountainous -- 2.4.3.3 Forest -- 2.4.3.4 Water/Sea -- 2.4.4 Elevation Angle Effects -- 2.5 UAV AG Propagation Measurement and Simulation Results in the Literature -- 2.5.1 Path Loss/Shadowing -- 2.5.2 Delay Dispersion -- 2.5.3 Narrowband Fading and Ricean K‐factor -- 2.5.4 Doppler Spread -- 2.5.5 Effects of UAV AG Measurement Environment | |
505 | 8 | |a 2.5.5.1 Urban/Suburban -- 2.5.5.2 Rural/Open Field -- 2.5.5.3 Mountains/Hilly, Over Sea, Forest -- 2.5.6 Simulations for Channel Characterization -- 2.6 UAV AG Propagation Models -- 2.6.1 AG Propagation Channel Model Types -- 2.6.2 Path‐Loss and Large‐Scale Fading Models -- 2.6.2.1 Free‐Space Path‐Loss Model -- 2.6.2.2 Floating‐Intercept Path‐Loss Model -- 2.6.2.3 Dual‐Slope Path‐Loss Model -- 2.6.2.4 Log‐Distance Path‐Loss Model -- 2.6.2.5 Modified FSPL Model -- 2.6.2.6 Two‐Ray PL Model -- 2.6.2.7 Log‐Distance FI Model -- 2.6.2.8 LOS/NLOS Mixture Path‐Loss Model -- 2.6.3 Airframe Shadowing -- 2.6.4 Small‐Scale Fading Models -- 2.6.5 Intermittent MPCs -- 2.6.6 Effect of Frequency Bands on Channel Models -- 2.6.7 MIMO AG Propagation Channel Models -- 2.6.8 Comparison of Different AG Channel Models -- 2.6.8.1 Large‐Scale Fading Models -- 2.6.8.2 Small‐Scale Fading Models -- 2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models -- 2.6.10 Ray Tracing Simulations -- 2.6.11 3GPP Channel Models for UAVs -- 2.7 Conclusions -- References -- Chapter 3 UAV Detection and Identification -- 3.1 Introduction -- 3.2 RF‐Based UAV Detection Techniques -- 3.2.1 RF Fingerprinting Technique -- 3.2.2 WiFi Fingerprinting Technique -- 3.3 Multistage UAV RF Signal Detection -- 3.3.1 Preprocessing Step: Multiresolution Analysis -- 3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection -- 3.3.3 Detection of WiFi and Bluetooth Interference -- 3.4 UAV Classification Using RF Fingerprints -- 3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA) -- 3.5 Experimental Results -- 3.5.1 Experimental Setup -- 3.5.2 Detection Results -- 3.5.3 UAV Classification Results -- 3.6 Conclusion -- Acknowledgments -- References -- Part II Cellular‐Connected UAV Communications -- Chapter 4 Performance Analysis for Cellular‐Connected UAVs | |
505 | 8 | |a 4.1 Introduction -- 4.1.1 Motivation -- 4.1.2 Related Works -- 4.1.3 Contributions and Chapter Structure -- 4.2 Modelling Preliminaries -- 4.2.1 Stochastic Geometry -- 4.2.2 Network Architecture -- 4.2.3 Channel Model -- 4.2.4 Blockage Modeling and LoS Probability -- 4.2.5 User Association Strategy and Link SINR -- 4.3 Performance Analysis -- 4.3.1 Exact Coverage Probability -- 4.3.2 Approximations for UAV Coverage Probability -- 4.3.2.1 Discarding NLoS and Noise Effects -- 4.3.2.2 Moment Matching -- 4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis -- 4.4 System Design: Study Cases and Discussion -- 4.4.1 Analysis of Accuracy -- 4.4.2 Design Parameters -- 4.4.2.1 Impact of UAV Altitude -- 4.4.2.2 Impact of UAV Antenna Beamwidth -- 4.4.2.3 Impact of UAV Antenna Tilt -- 4.4.2.4 Impact of Different Types of Environment -- 4.4.3 Heterogeneous Networks - Tier Selection -- 4.4.4 Network Densification -- 4.5 Conclusion -- References -- Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations -- 5.1 Introduction -- 5.2 LTE Live Network Measurements -- 5.2.1 Downlink Experiments -- 5.2.2 Path‐Loss Model Characterization -- 5.2.3 Uplink Experiments -- 5.3 Performance in LTE Networks -- 5.4 Reliability Enhancements -- 5.4.1 Interference Cancellation -- 5.4.2 Inter‐Cell Interference Control -- 5.4.3 CoMP -- 5.4.4 Antenna Beam Selection -- 5.4.5 Dual LTE Access -- 5.4.6 Dedicated Spectrum -- 5.4.7 Discussion -- 5.5 Summary and Outlook -- References -- Chapter 6 3GPP Standardization for Cellular‐Supported UAVs -- 6.1 Short Introduction to LTE and NR -- 6.1.1 LTE Physical Layer and MIMO -- 6.1.2 NR Physical Layer and MIMO -- 6.2 Drones Served by Mobile Networks -- 6.2.1 Interference Detection and Mitigation -- 6.2.2 Mobility for Drones -- 6.2.3 Need for Drone Identification and Authorization | |
505 | 8 | |a 6.3 3GPP Standardization Support for UAVs -- 6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells -- 6.3.2 Height, Speed, and Location Reporting -- 6.3.3 Uplink Power Control Enhancement -- 6.3.4 Flight Path Signalling -- 6.3.5 Drone Authorization and Identification -- 6.4 Flying Mode Detection in Cellular Networks -- References -- Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Cellular Network Topology -- 7.2.2 System Model -- 7.2.3 Massive MIMO Channel Estimation -- 7.2.4 Massive MIMO Spatial Multiplexing -- 7.3 Single‐User Downlink Performance -- 7.3.1 UAV Downlink C& -- C Channel -- 7.4 Massive MIMO Downlink Performance -- 7.4.1 UAV Downlink C& -- C Channel -- 7.4.2 UAV-GUE Downlink Interplay -- 7.5 Enhanced Downlink Performance -- 7.5.1 UAV Downlink C& -- C Channel -- 7.5.2 UAV-GUE Downlink Interplay -- 7.6 Uplink Performance -- 7.6.1 UAV Uplink C& -- C Channel and Data Streaming -- 7.6.2 UAV-GUE Uplink Interplay -- 7.7 Conclusions -- References -- Chapter 8 High‐Capacity Millimeter Wave UAV Communications -- 8.1 Motivation -- 8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication -- 8.2.1 UAV Roles in Cellular Networks -- 8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks -- 8.3 Aerial Channel Models at Millimeter Wave Frequencies -- 8.3.1 Propagation Considerations for Aerial Channels -- 8.3.1.1 Atmospheric Considerations -- 8.3.1.2 Blockages -- 8.3.2 Air‐to‐Air Millimeter Wave Channel Model -- 8.3.3 Air‐to‐Ground Millimeter Wave Channel Model -- 8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements -- 8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies -- 8.5 Establishing Aerial mmWave MIMO Links -- 8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication | |
505 | 8 | |a 8.5.2 Channel Estimation and Tracking in Aerial Environments -- 8.5.3 Design of Hybrid Precoders and Combiners -- 8.6 Research Opportunities -- 8.6.1 Sensing at the Tower -- 8.6.2 Joint Communication and Radar -- 8.6.3 Positioning and Mapping -- 8.7 Conclusions -- References -- Part III UAV‐Assisted Wireless Communications -- Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks -- 9.1 Introduction -- 9.2 Overview of the System Model -- 9.2.1 Spatial Model -- 9.2.2 3GPP‐Inspired Mobility Model -- 9.2.3 Channel Model -- 9.2.4 Metrics of Interest -- 9.3 Average Rate -- 9.4 Handover Probability -- 9.5 Results and Discussion -- 9.5.1 Density of Interfering DBSs -- 9.5.2 Average Rate -- 9.5.3 Handover Probability -- 9.6 Conclusion -- Acknowledgment -- References -- Chapter 10 UAV Placement and Aerial-Ground Interference Coordination -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 UABS Use Case for AG‐HetNets -- 10.4 UABS Placement in AG‐HetNet -- 10.5 AG‐HetNet Design Guidelines -- 10.5.1 Path‐Loss Model -- 10.5.1.1 Log‐Distance Path‐Loss Model -- 10.5.1.2 Okumura-Hata Path‐Loss Model -- 10.6 Inter‐Cell Interference Coordination -- 10.6.1 UE Association and Scheduling -- 10.7 Simulation Results -- 10.7.1 5pSE with UABSs Deployed on Hexagonal Grid -- 10.7.1.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.1.2 5pSE with Okumura-Hata Path‐Loss Model -- 10.7.2 5pSE with GA‐Based UABS Deployment Optimization -- 10.7.2.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.2.2 5pSE with Okumura-Hata Path‐Loss model -- 10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC -- 10.7.3.1 Influence of LDPLM on 5pSE -- 10.7.3.2 Influence of OHPLM on 5pSE -- 10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms -- 10.8 Concluding remarks -- References | |
505 | 8 | |a Chapter 11 Joint Trajectory and Resource Optimization | |
700 | 1 | |a Zeng, Yong |4 edt | |
700 | 1 | |a Guvenc, Ismail |4 edt | |
700 | 1 | |a Zhang, Rui |4 edt | |
700 | 1 | |a Geraci, Giovanni |4 edt | |
700 | 1 | |a Matolak, David W. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |a Zeng, Yong |t UAV Communications for 5G and Beyond |d Newark : John Wiley & Sons, Incorporated,c2020 |n Druck-Ausgabe, Hardcover |z 978-1-119-57569-6 |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-35-WEL | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844659 | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9295056 |l DE-573 |p ZDB-35-WEL |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6422922 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2578184 |
---|---|
_version_ | 1821935656137392128 |
any_adam_object | |
author2 | Zeng, Yong Guvenc, Ismail Zhang, Rui Geraci, Giovanni Matolak, David W. |
author2_role | edt edt edt edt edt |
author2_variant | y z yz i g ig r z rz g g gg d w m dw dwm |
author_facet | Zeng, Yong Guvenc, Ismail Zhang, Rui Geraci, Giovanni Matolak, David W. |
building | Verbundindex |
bvnumber | BV047442507 |
classification_tum | ELT 620 VER 593 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acronyms -- Part I Fundamentals of UAV Communications -- Chapter 1 Overview -- 1.1 UAV Definitions, Classes, and Global Trend -- 1.2 UAV Communication and Spectrum Requirement -- 1.3 Potential Existing Technologies for UAV Communications -- 1.3.1 Direct Link -- 1.3.2 Satellite -- 1.3.3 Ad‐Hoc Network -- 1.3.4 Cellular Network -- 1.4 Two Paradigms in Cellular UAV Communications -- 1.4.1 Cellular‐Connected UAVs -- 1.4.2 UAV‐Assisted Wireless Communications -- 1.5 New Opportunities and Challenges -- 1.5.1 High Altitude -- 1.5.2 High LoS Probability -- 1.5.3 High 3D Mobility -- 1.5.4 SWAP Constraints -- 1.6 Chapter Summary and Main Organization of the Book -- References -- Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 Literature Review on Aerial Propagation -- 2.2.2 Existing Surveys on UAV AG Propagation -- 2.3 UAV AG Propagation Characteristics -- 2.3.1 Comparison of UAV AG and Terrestrial Propagation -- 2.3.2 Frequency Bands for UAV AG Propagation -- 2.3.3 Scattering Characteristics for AG Propagation -- 2.3.4 Antenna Configurations for AG Propagation -- 2.3.5 Doppler Effects -- 2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms -- 2.4.1 Channel Measurement Configurations -- 2.4.2 Challenges in AG Channel Measurements -- 2.4.3 AG Propagation Scenarios -- 2.4.3.1 Open Space -- 2.4.3.2 Hilly/Mountainous -- 2.4.3.3 Forest -- 2.4.3.4 Water/Sea -- 2.4.4 Elevation Angle Effects -- 2.5 UAV AG Propagation Measurement and Simulation Results in the Literature -- 2.5.1 Path Loss/Shadowing -- 2.5.2 Delay Dispersion -- 2.5.3 Narrowband Fading and Ricean K‐factor -- 2.5.4 Doppler Spread -- 2.5.5 Effects of UAV AG Measurement Environment 2.5.5.1 Urban/Suburban -- 2.5.5.2 Rural/Open Field -- 2.5.5.3 Mountains/Hilly, Over Sea, Forest -- 2.5.6 Simulations for Channel Characterization -- 2.6 UAV AG Propagation Models -- 2.6.1 AG Propagation Channel Model Types -- 2.6.2 Path‐Loss and Large‐Scale Fading Models -- 2.6.2.1 Free‐Space Path‐Loss Model -- 2.6.2.2 Floating‐Intercept Path‐Loss Model -- 2.6.2.3 Dual‐Slope Path‐Loss Model -- 2.6.2.4 Log‐Distance Path‐Loss Model -- 2.6.2.5 Modified FSPL Model -- 2.6.2.6 Two‐Ray PL Model -- 2.6.2.7 Log‐Distance FI Model -- 2.6.2.8 LOS/NLOS Mixture Path‐Loss Model -- 2.6.3 Airframe Shadowing -- 2.6.4 Small‐Scale Fading Models -- 2.6.5 Intermittent MPCs -- 2.6.6 Effect of Frequency Bands on Channel Models -- 2.6.7 MIMO AG Propagation Channel Models -- 2.6.8 Comparison of Different AG Channel Models -- 2.6.8.1 Large‐Scale Fading Models -- 2.6.8.2 Small‐Scale Fading Models -- 2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models -- 2.6.10 Ray Tracing Simulations -- 2.6.11 3GPP Channel Models for UAVs -- 2.7 Conclusions -- References -- Chapter 3 UAV Detection and Identification -- 3.1 Introduction -- 3.2 RF‐Based UAV Detection Techniques -- 3.2.1 RF Fingerprinting Technique -- 3.2.2 WiFi Fingerprinting Technique -- 3.3 Multistage UAV RF Signal Detection -- 3.3.1 Preprocessing Step: Multiresolution Analysis -- 3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection -- 3.3.3 Detection of WiFi and Bluetooth Interference -- 3.4 UAV Classification Using RF Fingerprints -- 3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA) -- 3.5 Experimental Results -- 3.5.1 Experimental Setup -- 3.5.2 Detection Results -- 3.5.3 UAV Classification Results -- 3.6 Conclusion -- Acknowledgments -- References -- Part II Cellular‐Connected UAV Communications -- Chapter 4 Performance Analysis for Cellular‐Connected UAVs 4.1 Introduction -- 4.1.1 Motivation -- 4.1.2 Related Works -- 4.1.3 Contributions and Chapter Structure -- 4.2 Modelling Preliminaries -- 4.2.1 Stochastic Geometry -- 4.2.2 Network Architecture -- 4.2.3 Channel Model -- 4.2.4 Blockage Modeling and LoS Probability -- 4.2.5 User Association Strategy and Link SINR -- 4.3 Performance Analysis -- 4.3.1 Exact Coverage Probability -- 4.3.2 Approximations for UAV Coverage Probability -- 4.3.2.1 Discarding NLoS and Noise Effects -- 4.3.2.2 Moment Matching -- 4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis -- 4.4 System Design: Study Cases and Discussion -- 4.4.1 Analysis of Accuracy -- 4.4.2 Design Parameters -- 4.4.2.1 Impact of UAV Altitude -- 4.4.2.2 Impact of UAV Antenna Beamwidth -- 4.4.2.3 Impact of UAV Antenna Tilt -- 4.4.2.4 Impact of Different Types of Environment -- 4.4.3 Heterogeneous Networks - Tier Selection -- 4.4.4 Network Densification -- 4.5 Conclusion -- References -- Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations -- 5.1 Introduction -- 5.2 LTE Live Network Measurements -- 5.2.1 Downlink Experiments -- 5.2.2 Path‐Loss Model Characterization -- 5.2.3 Uplink Experiments -- 5.3 Performance in LTE Networks -- 5.4 Reliability Enhancements -- 5.4.1 Interference Cancellation -- 5.4.2 Inter‐Cell Interference Control -- 5.4.3 CoMP -- 5.4.4 Antenna Beam Selection -- 5.4.5 Dual LTE Access -- 5.4.6 Dedicated Spectrum -- 5.4.7 Discussion -- 5.5 Summary and Outlook -- References -- Chapter 6 3GPP Standardization for Cellular‐Supported UAVs -- 6.1 Short Introduction to LTE and NR -- 6.1.1 LTE Physical Layer and MIMO -- 6.1.2 NR Physical Layer and MIMO -- 6.2 Drones Served by Mobile Networks -- 6.2.1 Interference Detection and Mitigation -- 6.2.2 Mobility for Drones -- 6.2.3 Need for Drone Identification and Authorization 6.3 3GPP Standardization Support for UAVs -- 6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells -- 6.3.2 Height, Speed, and Location Reporting -- 6.3.3 Uplink Power Control Enhancement -- 6.3.4 Flight Path Signalling -- 6.3.5 Drone Authorization and Identification -- 6.4 Flying Mode Detection in Cellular Networks -- References -- Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Cellular Network Topology -- 7.2.2 System Model -- 7.2.3 Massive MIMO Channel Estimation -- 7.2.4 Massive MIMO Spatial Multiplexing -- 7.3 Single‐User Downlink Performance -- 7.3.1 UAV Downlink C& -- C Channel -- 7.4 Massive MIMO Downlink Performance -- 7.4.1 UAV Downlink C& -- C Channel -- 7.4.2 UAV-GUE Downlink Interplay -- 7.5 Enhanced Downlink Performance -- 7.5.1 UAV Downlink C& -- C Channel -- 7.5.2 UAV-GUE Downlink Interplay -- 7.6 Uplink Performance -- 7.6.1 UAV Uplink C& -- C Channel and Data Streaming -- 7.6.2 UAV-GUE Uplink Interplay -- 7.7 Conclusions -- References -- Chapter 8 High‐Capacity Millimeter Wave UAV Communications -- 8.1 Motivation -- 8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication -- 8.2.1 UAV Roles in Cellular Networks -- 8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks -- 8.3 Aerial Channel Models at Millimeter Wave Frequencies -- 8.3.1 Propagation Considerations for Aerial Channels -- 8.3.1.1 Atmospheric Considerations -- 8.3.1.2 Blockages -- 8.3.2 Air‐to‐Air Millimeter Wave Channel Model -- 8.3.3 Air‐to‐Ground Millimeter Wave Channel Model -- 8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements -- 8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies -- 8.5 Establishing Aerial mmWave MIMO Links -- 8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication 8.5.2 Channel Estimation and Tracking in Aerial Environments -- 8.5.3 Design of Hybrid Precoders and Combiners -- 8.6 Research Opportunities -- 8.6.1 Sensing at the Tower -- 8.6.2 Joint Communication and Radar -- 8.6.3 Positioning and Mapping -- 8.7 Conclusions -- References -- Part III UAV‐Assisted Wireless Communications -- Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks -- 9.1 Introduction -- 9.2 Overview of the System Model -- 9.2.1 Spatial Model -- 9.2.2 3GPP‐Inspired Mobility Model -- 9.2.3 Channel Model -- 9.2.4 Metrics of Interest -- 9.3 Average Rate -- 9.4 Handover Probability -- 9.5 Results and Discussion -- 9.5.1 Density of Interfering DBSs -- 9.5.2 Average Rate -- 9.5.3 Handover Probability -- 9.6 Conclusion -- Acknowledgment -- References -- Chapter 10 UAV Placement and Aerial-Ground Interference Coordination -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 UABS Use Case for AG‐HetNets -- 10.4 UABS Placement in AG‐HetNet -- 10.5 AG‐HetNet Design Guidelines -- 10.5.1 Path‐Loss Model -- 10.5.1.1 Log‐Distance Path‐Loss Model -- 10.5.1.2 Okumura-Hata Path‐Loss Model -- 10.6 Inter‐Cell Interference Coordination -- 10.6.1 UE Association and Scheduling -- 10.7 Simulation Results -- 10.7.1 5pSE with UABSs Deployed on Hexagonal Grid -- 10.7.1.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.1.2 5pSE with Okumura-Hata Path‐Loss Model -- 10.7.2 5pSE with GA‐Based UABS Deployment Optimization -- 10.7.2.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.2.2 5pSE with Okumura-Hata Path‐Loss model -- 10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC -- 10.7.3.1 Influence of LDPLM on 5pSE -- 10.7.3.2 Influence of OHPLM on 5pSE -- 10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms -- 10.8 Concluding remarks -- References Chapter 11 Joint Trajectory and Resource Optimization |
ctrlnum | (ZDB-30-PQE)EBC6422922 (ZDB-30-PAD)EBC6422922 (ZDB-89-EBL)EBL6422922 (OCoLC)1227389882 (DE-599)BVBBV047442507 |
dewey-full | 629.1355 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.1355 |
dewey-search | 629.1355 |
dewey-sort | 3629.1355 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik Verkehr / Transport |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11498nam a2200565zc 4500</leader><controlfield tag="001">BV047442507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119575672</subfield><subfield code="q">PDF</subfield><subfield code="9">978-1-119-57567-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119575726</subfield><subfield code="q">EPUB</subfield><subfield code="9">978-1-119-57572-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119575795</subfield><subfield code="9">9781119575795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6422922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6422922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6422922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227389882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442507</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.1355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 620</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 593</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">UAV communications for 5G and beyond</subfield><subfield code="c">edited by Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Piscataway Township, New Jersey, USA]</subfield><subfield code="b">IEEE Press</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 440 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acronyms -- Part I Fundamentals of UAV Communications -- Chapter 1 Overview -- 1.1 UAV Definitions, Classes, and Global Trend -- 1.2 UAV Communication and Spectrum Requirement -- 1.3 Potential Existing Technologies for UAV Communications -- 1.3.1 Direct Link -- 1.3.2 Satellite -- 1.3.3 Ad‐Hoc Network -- 1.3.4 Cellular Network -- 1.4 Two Paradigms in Cellular UAV Communications -- 1.4.1 Cellular‐Connected UAVs -- 1.4.2 UAV‐Assisted Wireless Communications -- 1.5 New Opportunities and Challenges -- 1.5.1 High Altitude -- 1.5.2 High LoS Probability -- 1.5.3 High 3D Mobility -- 1.5.4 SWAP Constraints -- 1.6 Chapter Summary and Main Organization of the Book -- References -- Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 Literature Review on Aerial Propagation -- 2.2.2 Existing Surveys on UAV AG Propagation -- 2.3 UAV AG Propagation Characteristics -- 2.3.1 Comparison of UAV AG and Terrestrial Propagation -- 2.3.2 Frequency Bands for UAV AG Propagation -- 2.3.3 Scattering Characteristics for AG Propagation -- 2.3.4 Antenna Configurations for AG Propagation -- 2.3.5 Doppler Effects -- 2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms -- 2.4.1 Channel Measurement Configurations -- 2.4.2 Challenges in AG Channel Measurements -- 2.4.3 AG Propagation Scenarios -- 2.4.3.1 Open Space -- 2.4.3.2 Hilly/Mountainous -- 2.4.3.3 Forest -- 2.4.3.4 Water/Sea -- 2.4.4 Elevation Angle Effects -- 2.5 UAV AG Propagation Measurement and Simulation Results in the Literature -- 2.5.1 Path Loss/Shadowing -- 2.5.2 Delay Dispersion -- 2.5.3 Narrowband Fading and Ricean K‐factor -- 2.5.4 Doppler Spread -- 2.5.5 Effects of UAV AG Measurement Environment</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5.5.1 Urban/Suburban -- 2.5.5.2 Rural/Open Field -- 2.5.5.3 Mountains/Hilly, Over Sea, Forest -- 2.5.6 Simulations for Channel Characterization -- 2.6 UAV AG Propagation Models -- 2.6.1 AG Propagation Channel Model Types -- 2.6.2 Path‐Loss and Large‐Scale Fading Models -- 2.6.2.1 Free‐Space Path‐Loss Model -- 2.6.2.2 Floating‐Intercept Path‐Loss Model -- 2.6.2.3 Dual‐Slope Path‐Loss Model -- 2.6.2.4 Log‐Distance Path‐Loss Model -- 2.6.2.5 Modified FSPL Model -- 2.6.2.6 Two‐Ray PL Model -- 2.6.2.7 Log‐Distance FI Model -- 2.6.2.8 LOS/NLOS Mixture Path‐Loss Model -- 2.6.3 Airframe Shadowing -- 2.6.4 Small‐Scale Fading Models -- 2.6.5 Intermittent MPCs -- 2.6.6 Effect of Frequency Bands on Channel Models -- 2.6.7 MIMO AG Propagation Channel Models -- 2.6.8 Comparison of Different AG Channel Models -- 2.6.8.1 Large‐Scale Fading Models -- 2.6.8.2 Small‐Scale Fading Models -- 2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models -- 2.6.10 Ray Tracing Simulations -- 2.6.11 3GPP Channel Models for UAVs -- 2.7 Conclusions -- References -- Chapter 3 UAV Detection and Identification -- 3.1 Introduction -- 3.2 RF‐Based UAV Detection Techniques -- 3.2.1 RF Fingerprinting Technique -- 3.2.2 WiFi Fingerprinting Technique -- 3.3 Multistage UAV RF Signal Detection -- 3.3.1 Preprocessing Step: Multiresolution Analysis -- 3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection -- 3.3.3 Detection of WiFi and Bluetooth Interference -- 3.4 UAV Classification Using RF Fingerprints -- 3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA) -- 3.5 Experimental Results -- 3.5.1 Experimental Setup -- 3.5.2 Detection Results -- 3.5.3 UAV Classification Results -- 3.6 Conclusion -- Acknowledgments -- References -- Part II Cellular‐Connected UAV Communications -- Chapter 4 Performance Analysis for Cellular‐Connected UAVs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Introduction -- 4.1.1 Motivation -- 4.1.2 Related Works -- 4.1.3 Contributions and Chapter Structure -- 4.2 Modelling Preliminaries -- 4.2.1 Stochastic Geometry -- 4.2.2 Network Architecture -- 4.2.3 Channel Model -- 4.2.4 Blockage Modeling and LoS Probability -- 4.2.5 User Association Strategy and Link SINR -- 4.3 Performance Analysis -- 4.3.1 Exact Coverage Probability -- 4.3.2 Approximations for UAV Coverage Probability -- 4.3.2.1 Discarding NLoS and Noise Effects -- 4.3.2.2 Moment Matching -- 4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis -- 4.4 System Design: Study Cases and Discussion -- 4.4.1 Analysis of Accuracy -- 4.4.2 Design Parameters -- 4.4.2.1 Impact of UAV Altitude -- 4.4.2.2 Impact of UAV Antenna Beamwidth -- 4.4.2.3 Impact of UAV Antenna Tilt -- 4.4.2.4 Impact of Different Types of Environment -- 4.4.3 Heterogeneous Networks - Tier Selection -- 4.4.4 Network Densification -- 4.5 Conclusion -- References -- Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations -- 5.1 Introduction -- 5.2 LTE Live Network Measurements -- 5.2.1 Downlink Experiments -- 5.2.2 Path‐Loss Model Characterization -- 5.2.3 Uplink Experiments -- 5.3 Performance in LTE Networks -- 5.4 Reliability Enhancements -- 5.4.1 Interference Cancellation -- 5.4.2 Inter‐Cell Interference Control -- 5.4.3 CoMP -- 5.4.4 Antenna Beam Selection -- 5.4.5 Dual LTE Access -- 5.4.6 Dedicated Spectrum -- 5.4.7 Discussion -- 5.5 Summary and Outlook -- References -- Chapter 6 3GPP Standardization for Cellular‐Supported UAVs -- 6.1 Short Introduction to LTE and NR -- 6.1.1 LTE Physical Layer and MIMO -- 6.1.2 NR Physical Layer and MIMO -- 6.2 Drones Served by Mobile Networks -- 6.2.1 Interference Detection and Mitigation -- 6.2.2 Mobility for Drones -- 6.2.3 Need for Drone Identification and Authorization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 3GPP Standardization Support for UAVs -- 6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells -- 6.3.2 Height, Speed, and Location Reporting -- 6.3.3 Uplink Power Control Enhancement -- 6.3.4 Flight Path Signalling -- 6.3.5 Drone Authorization and Identification -- 6.4 Flying Mode Detection in Cellular Networks -- References -- Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Cellular Network Topology -- 7.2.2 System Model -- 7.2.3 Massive MIMO Channel Estimation -- 7.2.4 Massive MIMO Spatial Multiplexing -- 7.3 Single‐User Downlink Performance -- 7.3.1 UAV Downlink C&amp -- C Channel -- 7.4 Massive MIMO Downlink Performance -- 7.4.1 UAV Downlink C&amp -- C Channel -- 7.4.2 UAV-GUE Downlink Interplay -- 7.5 Enhanced Downlink Performance -- 7.5.1 UAV Downlink C&amp -- C Channel -- 7.5.2 UAV-GUE Downlink Interplay -- 7.6 Uplink Performance -- 7.6.1 UAV Uplink C&amp -- C Channel and Data Streaming -- 7.6.2 UAV-GUE Uplink Interplay -- 7.7 Conclusions -- References -- Chapter 8 High‐Capacity Millimeter Wave UAV Communications -- 8.1 Motivation -- 8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication -- 8.2.1 UAV Roles in Cellular Networks -- 8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks -- 8.3 Aerial Channel Models at Millimeter Wave Frequencies -- 8.3.1 Propagation Considerations for Aerial Channels -- 8.3.1.1 Atmospheric Considerations -- 8.3.1.2 Blockages -- 8.3.2 Air‐to‐Air Millimeter Wave Channel Model -- 8.3.3 Air‐to‐Ground Millimeter Wave Channel Model -- 8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements -- 8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies -- 8.5 Establishing Aerial mmWave MIMO Links -- 8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5.2 Channel Estimation and Tracking in Aerial Environments -- 8.5.3 Design of Hybrid Precoders and Combiners -- 8.6 Research Opportunities -- 8.6.1 Sensing at the Tower -- 8.6.2 Joint Communication and Radar -- 8.6.3 Positioning and Mapping -- 8.7 Conclusions -- References -- Part III UAV‐Assisted Wireless Communications -- Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks -- 9.1 Introduction -- 9.2 Overview of the System Model -- 9.2.1 Spatial Model -- 9.2.2 3GPP‐Inspired Mobility Model -- 9.2.3 Channel Model -- 9.2.4 Metrics of Interest -- 9.3 Average Rate -- 9.4 Handover Probability -- 9.5 Results and Discussion -- 9.5.1 Density of Interfering DBSs -- 9.5.2 Average Rate -- 9.5.3 Handover Probability -- 9.6 Conclusion -- Acknowledgment -- References -- Chapter 10 UAV Placement and Aerial-Ground Interference Coordination -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 UABS Use Case for AG‐HetNets -- 10.4 UABS Placement in AG‐HetNet -- 10.5 AG‐HetNet Design Guidelines -- 10.5.1 Path‐Loss Model -- 10.5.1.1 Log‐Distance Path‐Loss Model -- 10.5.1.2 Okumura-Hata Path‐Loss Model -- 10.6 Inter‐Cell Interference Coordination -- 10.6.1 UE Association and Scheduling -- 10.7 Simulation Results -- 10.7.1 5pSE with UABSs Deployed on Hexagonal Grid -- 10.7.1.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.1.2 5pSE with Okumura-Hata Path‐Loss Model -- 10.7.2 5pSE with GA‐Based UABS Deployment Optimization -- 10.7.2.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.2.2 5pSE with Okumura-Hata Path‐Loss model -- 10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC -- 10.7.3.1 Influence of LDPLM on 5pSE -- 10.7.3.2 Influence of OHPLM on 5pSE -- 10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms -- 10.8 Concluding remarks -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 11 Joint Trajectory and Resource Optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yong</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guvenc, Ismail</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geraci, Giovanni</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matolak, David W.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Zeng, Yong</subfield><subfield code="t">UAV Communications for 5G and Beyond</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2020</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-119-57569-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844659</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9295056</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6422922</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442507 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:19:41Z |
institution | BVB |
isbn | 9781119575672 9781119575726 9781119575795 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844659 |
oclc_num | 1227389882 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-573 |
owner_facet | DE-91 DE-BY-TUM DE-573 |
physical | 1 Online-Ressource (xxiv, 440 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-35-WEL ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley IEEE Press |
record_format | marc |
spellingShingle | UAV communications for 5G and beyond Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acronyms -- Part I Fundamentals of UAV Communications -- Chapter 1 Overview -- 1.1 UAV Definitions, Classes, and Global Trend -- 1.2 UAV Communication and Spectrum Requirement -- 1.3 Potential Existing Technologies for UAV Communications -- 1.3.1 Direct Link -- 1.3.2 Satellite -- 1.3.3 Ad‐Hoc Network -- 1.3.4 Cellular Network -- 1.4 Two Paradigms in Cellular UAV Communications -- 1.4.1 Cellular‐Connected UAVs -- 1.4.2 UAV‐Assisted Wireless Communications -- 1.5 New Opportunities and Challenges -- 1.5.1 High Altitude -- 1.5.2 High LoS Probability -- 1.5.3 High 3D Mobility -- 1.5.4 SWAP Constraints -- 1.6 Chapter Summary and Main Organization of the Book -- References -- Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 Literature Review on Aerial Propagation -- 2.2.2 Existing Surveys on UAV AG Propagation -- 2.3 UAV AG Propagation Characteristics -- 2.3.1 Comparison of UAV AG and Terrestrial Propagation -- 2.3.2 Frequency Bands for UAV AG Propagation -- 2.3.3 Scattering Characteristics for AG Propagation -- 2.3.4 Antenna Configurations for AG Propagation -- 2.3.5 Doppler Effects -- 2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms -- 2.4.1 Channel Measurement Configurations -- 2.4.2 Challenges in AG Channel Measurements -- 2.4.3 AG Propagation Scenarios -- 2.4.3.1 Open Space -- 2.4.3.2 Hilly/Mountainous -- 2.4.3.3 Forest -- 2.4.3.4 Water/Sea -- 2.4.4 Elevation Angle Effects -- 2.5 UAV AG Propagation Measurement and Simulation Results in the Literature -- 2.5.1 Path Loss/Shadowing -- 2.5.2 Delay Dispersion -- 2.5.3 Narrowband Fading and Ricean K‐factor -- 2.5.4 Doppler Spread -- 2.5.5 Effects of UAV AG Measurement Environment 2.5.5.1 Urban/Suburban -- 2.5.5.2 Rural/Open Field -- 2.5.5.3 Mountains/Hilly, Over Sea, Forest -- 2.5.6 Simulations for Channel Characterization -- 2.6 UAV AG Propagation Models -- 2.6.1 AG Propagation Channel Model Types -- 2.6.2 Path‐Loss and Large‐Scale Fading Models -- 2.6.2.1 Free‐Space Path‐Loss Model -- 2.6.2.2 Floating‐Intercept Path‐Loss Model -- 2.6.2.3 Dual‐Slope Path‐Loss Model -- 2.6.2.4 Log‐Distance Path‐Loss Model -- 2.6.2.5 Modified FSPL Model -- 2.6.2.6 Two‐Ray PL Model -- 2.6.2.7 Log‐Distance FI Model -- 2.6.2.8 LOS/NLOS Mixture Path‐Loss Model -- 2.6.3 Airframe Shadowing -- 2.6.4 Small‐Scale Fading Models -- 2.6.5 Intermittent MPCs -- 2.6.6 Effect of Frequency Bands on Channel Models -- 2.6.7 MIMO AG Propagation Channel Models -- 2.6.8 Comparison of Different AG Channel Models -- 2.6.8.1 Large‐Scale Fading Models -- 2.6.8.2 Small‐Scale Fading Models -- 2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models -- 2.6.10 Ray Tracing Simulations -- 2.6.11 3GPP Channel Models for UAVs -- 2.7 Conclusions -- References -- Chapter 3 UAV Detection and Identification -- 3.1 Introduction -- 3.2 RF‐Based UAV Detection Techniques -- 3.2.1 RF Fingerprinting Technique -- 3.2.2 WiFi Fingerprinting Technique -- 3.3 Multistage UAV RF Signal Detection -- 3.3.1 Preprocessing Step: Multiresolution Analysis -- 3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection -- 3.3.3 Detection of WiFi and Bluetooth Interference -- 3.4 UAV Classification Using RF Fingerprints -- 3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA) -- 3.5 Experimental Results -- 3.5.1 Experimental Setup -- 3.5.2 Detection Results -- 3.5.3 UAV Classification Results -- 3.6 Conclusion -- Acknowledgments -- References -- Part II Cellular‐Connected UAV Communications -- Chapter 4 Performance Analysis for Cellular‐Connected UAVs 4.1 Introduction -- 4.1.1 Motivation -- 4.1.2 Related Works -- 4.1.3 Contributions and Chapter Structure -- 4.2 Modelling Preliminaries -- 4.2.1 Stochastic Geometry -- 4.2.2 Network Architecture -- 4.2.3 Channel Model -- 4.2.4 Blockage Modeling and LoS Probability -- 4.2.5 User Association Strategy and Link SINR -- 4.3 Performance Analysis -- 4.3.1 Exact Coverage Probability -- 4.3.2 Approximations for UAV Coverage Probability -- 4.3.2.1 Discarding NLoS and Noise Effects -- 4.3.2.2 Moment Matching -- 4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis -- 4.4 System Design: Study Cases and Discussion -- 4.4.1 Analysis of Accuracy -- 4.4.2 Design Parameters -- 4.4.2.1 Impact of UAV Altitude -- 4.4.2.2 Impact of UAV Antenna Beamwidth -- 4.4.2.3 Impact of UAV Antenna Tilt -- 4.4.2.4 Impact of Different Types of Environment -- 4.4.3 Heterogeneous Networks - Tier Selection -- 4.4.4 Network Densification -- 4.5 Conclusion -- References -- Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations -- 5.1 Introduction -- 5.2 LTE Live Network Measurements -- 5.2.1 Downlink Experiments -- 5.2.2 Path‐Loss Model Characterization -- 5.2.3 Uplink Experiments -- 5.3 Performance in LTE Networks -- 5.4 Reliability Enhancements -- 5.4.1 Interference Cancellation -- 5.4.2 Inter‐Cell Interference Control -- 5.4.3 CoMP -- 5.4.4 Antenna Beam Selection -- 5.4.5 Dual LTE Access -- 5.4.6 Dedicated Spectrum -- 5.4.7 Discussion -- 5.5 Summary and Outlook -- References -- Chapter 6 3GPP Standardization for Cellular‐Supported UAVs -- 6.1 Short Introduction to LTE and NR -- 6.1.1 LTE Physical Layer and MIMO -- 6.1.2 NR Physical Layer and MIMO -- 6.2 Drones Served by Mobile Networks -- 6.2.1 Interference Detection and Mitigation -- 6.2.2 Mobility for Drones -- 6.2.3 Need for Drone Identification and Authorization 6.3 3GPP Standardization Support for UAVs -- 6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells -- 6.3.2 Height, Speed, and Location Reporting -- 6.3.3 Uplink Power Control Enhancement -- 6.3.4 Flight Path Signalling -- 6.3.5 Drone Authorization and Identification -- 6.4 Flying Mode Detection in Cellular Networks -- References -- Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Cellular Network Topology -- 7.2.2 System Model -- 7.2.3 Massive MIMO Channel Estimation -- 7.2.4 Massive MIMO Spatial Multiplexing -- 7.3 Single‐User Downlink Performance -- 7.3.1 UAV Downlink C& -- C Channel -- 7.4 Massive MIMO Downlink Performance -- 7.4.1 UAV Downlink C& -- C Channel -- 7.4.2 UAV-GUE Downlink Interplay -- 7.5 Enhanced Downlink Performance -- 7.5.1 UAV Downlink C& -- C Channel -- 7.5.2 UAV-GUE Downlink Interplay -- 7.6 Uplink Performance -- 7.6.1 UAV Uplink C& -- C Channel and Data Streaming -- 7.6.2 UAV-GUE Uplink Interplay -- 7.7 Conclusions -- References -- Chapter 8 High‐Capacity Millimeter Wave UAV Communications -- 8.1 Motivation -- 8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication -- 8.2.1 UAV Roles in Cellular Networks -- 8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks -- 8.3 Aerial Channel Models at Millimeter Wave Frequencies -- 8.3.1 Propagation Considerations for Aerial Channels -- 8.3.1.1 Atmospheric Considerations -- 8.3.1.2 Blockages -- 8.3.2 Air‐to‐Air Millimeter Wave Channel Model -- 8.3.3 Air‐to‐Ground Millimeter Wave Channel Model -- 8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements -- 8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies -- 8.5 Establishing Aerial mmWave MIMO Links -- 8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication 8.5.2 Channel Estimation and Tracking in Aerial Environments -- 8.5.3 Design of Hybrid Precoders and Combiners -- 8.6 Research Opportunities -- 8.6.1 Sensing at the Tower -- 8.6.2 Joint Communication and Radar -- 8.6.3 Positioning and Mapping -- 8.7 Conclusions -- References -- Part III UAV‐Assisted Wireless Communications -- Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks -- 9.1 Introduction -- 9.2 Overview of the System Model -- 9.2.1 Spatial Model -- 9.2.2 3GPP‐Inspired Mobility Model -- 9.2.3 Channel Model -- 9.2.4 Metrics of Interest -- 9.3 Average Rate -- 9.4 Handover Probability -- 9.5 Results and Discussion -- 9.5.1 Density of Interfering DBSs -- 9.5.2 Average Rate -- 9.5.3 Handover Probability -- 9.6 Conclusion -- Acknowledgment -- References -- Chapter 10 UAV Placement and Aerial-Ground Interference Coordination -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 UABS Use Case for AG‐HetNets -- 10.4 UABS Placement in AG‐HetNet -- 10.5 AG‐HetNet Design Guidelines -- 10.5.1 Path‐Loss Model -- 10.5.1.1 Log‐Distance Path‐Loss Model -- 10.5.1.2 Okumura-Hata Path‐Loss Model -- 10.6 Inter‐Cell Interference Coordination -- 10.6.1 UE Association and Scheduling -- 10.7 Simulation Results -- 10.7.1 5pSE with UABSs Deployed on Hexagonal Grid -- 10.7.1.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.1.2 5pSE with Okumura-Hata Path‐Loss Model -- 10.7.2 5pSE with GA‐Based UABS Deployment Optimization -- 10.7.2.1 5pSE with Log‐Normal Path‐Loss Model -- 10.7.2.2 5pSE with Okumura-Hata Path‐Loss model -- 10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC -- 10.7.3.1 Influence of LDPLM on 5pSE -- 10.7.3.2 Influence of OHPLM on 5pSE -- 10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms -- 10.8 Concluding remarks -- References Chapter 11 Joint Trajectory and Resource Optimization |
title | UAV communications for 5G and beyond |
title_auth | UAV communications for 5G and beyond |
title_exact_search | UAV communications for 5G and beyond |
title_full | UAV communications for 5G and beyond edited by Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak |
title_fullStr | UAV communications for 5G and beyond edited by Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak |
title_full_unstemmed | UAV communications for 5G and beyond edited by Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak |
title_short | UAV communications for 5G and beyond |
title_sort | uav communications for 5g and beyond |
work_keys_str_mv | AT zengyong uavcommunicationsfor5gandbeyond AT guvencismail uavcommunicationsfor5gandbeyond AT zhangrui uavcommunicationsfor5gandbeyond AT geracigiovanni uavcommunicationsfor5gandbeyond AT matolakdavidw uavcommunicationsfor5gandbeyond |