A Framework of Human Systems Engineering: Applications and Case Studies
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2021
|
Schlagwörter: | |
Links: | https://ieeexplore.ieee.org/servlet/opac?bknumber=9289918 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Umfang: | 1 Online-Ressource (301 Seiten) |
ISBN: | 9781119698760 9781119698777 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047442458 | ||
003 | DE-604 | ||
005 | 20221213 | ||
007 | cr|uuu---uuuuu | ||
008 | 210827s2021 xx o|||| 00||| eng d | ||
020 | |a 9781119698760 |9 978-1-119-69876-0 | ||
020 | |a 9781119698777 |9 978-1-119-69877-7 | ||
035 | |a (ZDB-30-PQE)EBC6420052 | ||
035 | |a (ZDB-30-PAD)EBC6420052 | ||
035 | |a (ZDB-89-EBL)EBL6420052 | ||
035 | |a (OCoLC)1226580774 | ||
035 | |a (DE-599)BVBBV047442458 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 620.82 | |
100 | 1 | |a Handley, Holly A. H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Framework of Human Systems Engineering |b Applications and Case Studies |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (301 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- Contributors List -- Foreword -- Preface -- Section 1 Sociotechnical System Types -- Chapter 1 Introduction to the Human Systems Engineering Framework -- 1.1 Introduction -- 1.2 Human-Centered Disciplines -- 1.3 Human Systems Engineering -- 1.4 Development of the HSE Framework -- 1.5 HSE Applications -- 1.6 Conclusion -- References -- Chapter 2 Human Interface Considerations for Situational Awareness -- 2.1 Introduction -- 2.2 Situational Awareness: A Global Challenge -- 2.3 Putting Situational Awareness in Context: First Responders -- 2.4 Deep Dive on Human Interface Considerations -- 2.5 Putting Human Interface Considerations in Context: Safe Cities -- 2.6 Human Interface Considerations for Privacy-Aware SA -- Reference -- Chapter 3 Utilizing Artificial Intelligence to Make Systems Engineering More Human* -- 3.1 Introduction -- 3.2 Changing Business Needs Drive Changes in Systems Engineering -- 3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem -- 3.3.1 A Conceptual Architecture for Epoch 4 -- 3.3.2 Temporal Sociotechnical Measures -- 3.3.3 Systems Engineering Frameworks -- 3.3.3.1 Sociotechnical Network Models -- 3.3.3.2 Digital Twins -- 3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems -- 3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures -- 3.6 AI in Systems Engineering Frameworks -- 3.7 AI in Sociotechnical Network Models -- 3.8 AI-Based Digital Twins -- 3.9 Discussion -- 3.10 Case Study -- 3.11 Systems Engineering Sociotechnical Modeling Approach -- 3.11.1 Modeling the Project -- 3.12 Results -- 3.13 Summary -- References -- Chapter 4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming -- 4.1 Introduction -- 4.2 Trust in Successful Teaming | |
505 | 8 | |a 4.3 Meaningful Human-Autonomy Teaming -- 4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS -- 4.5 Ensuring Successful SAS -- 4.6 Developing Case Study: Airborne Shepherding SAS -- 4.7 Conclusion -- Acknowledgment -- References -- Section 2 Domain Deep Dives -- Chapter 5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail -- 5.1 Introduction -- 5.2 Organizational System Evolution -- 5.2.1 Characteristics of Organizational Systems -- 5.2.2 The Organization in Flux -- 5.2.3 Introducing New Technologies -- 5.3 Model-Based Systems Engineering -- 5.4 Modeling Approach for the Development of OCMM -- 5.4.1 Technology Specification -- 5.4.2 Capture System Change -- 5.4.3 Capture Organizational Changes -- 5.4.4 Manage Organization Change -- 5.4.5 Analyze Emergent System -- 5.5 Implementation -- 5.5.1 User Portals -- 5.5.2 OCMM Metamodel -- 5.6 Case Study: Digital Transformation in the Rail Industry -- 5.6.1 Technology Specification -- 5.6.2 Capture System Change -- 5.6.3 Capture Organization Changes -- 5.6.4 Organization Change Management -- 5.6.5 Analyze Emergent System -- 5.7 OCMM Reception -- 5.8 Summary and Conclusions -- References -- Chapter 6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle -- 6.1 Introduction -- 6.2 Spacecraft History -- 6.2.1 Mercury/Gemini/Apollo -- 6.2.2 Space Shuttle -- 6.2.3 International Space Station -- 6.2.4 Orion Spacecraft -- 6.3 in the NASA Systems Engineering Process -- 6.3.1 NASA Systems Engineering Process and HSI -- 6.4 Mission Challenges -- 6.4.1 Innovation and Future Vehicle Designs Challenge -- 6.4.2 Operations Challenges -- 6.4.3 Maintainability and Supportability Challenges -- 6.4.4 Habitability and Environment Challenges -- 6.4.5 Safety Challenges -- 6.4.6 Training Challenges -- 6.5 Conclusions -- References | |
505 | 8 | |a Chapter 7 Aerospace Human Systems Integration Evolution over the Last 40 Years -- 7.1 Introduction -- 7.2 Evolution of Aviation: A Human Systems Integration Perspective -- 7.3 Evolution with Respect to Models, Human Roles, and Disciplines -- 7.3.1 From Single-Agent Interaction to Multi-agent Integration -- 7.3.2 Systems Management and Authority Sharing -- 7.3.3 Human-Centered Disciplines Involved -- 7.3.4 From Automation Issues to Tangibility Issues -- 7.4 From Rigid Automation to Flexible Autonomy -- 7.5 How Software Took the Lead on Hardware -- 7.6 Toward a Human-Centered Systemic Framework -- 7.6.1 System of Systems, Physical and Cognitive Structures and Functions -- 7.6.2 Emergent Behaviors and Properties -- 7.6.3 System of Systems Properties -- 7.7 Conclusion and Perspectives -- References -- Section 3 Focus on Training and Skill Sets -- Chapter 8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees -- 8.1 Introduction -- 8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis -- 8.1.2 Generational Differences in Learning -- 8.2 Virtual Technologies in Aviation -- 8.2.1 Potential Approaches for Incorporating Virtual Technologies -- 8.3 Human Systems Engineering Challenges -- 8.4 Potential Applications Beyond Aviation Training -- 8.5 Looking Forward -- Acknowledgement -- References -- Chapter 9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense -- 9.1 Introduction -- 9.2 Defense Training System -- 9.2.1 DTS Conceptualization -- 9.2.2 DTS as an Extended Enterprise Systems -- 9.2.3 Example: Navy Training System -- 9.2.3.1 Navy Training System as a Part of DTS -- 9.2.3.2 Navy Training System as a Part of DoD -- 9.3 Concept of Resilience in the Academic Literature | |
505 | 8 | |a 9.3.1 Definition of Resilience: A Multidisciplinary and Historical View -- 9.3.2 Definition of Resilience: Key Aspects -- 9.3.2.1 What? (Resilience Is and Is Not) -- 9.3.2.2 Why? (Resilience Triggers) -- 9.3.2.3 How? (Resilience Mechanisms and Measures) -- 9.4 DTS Case Study Methodology -- 9.4.1 DTS Resilience Measurement Methodology -- 9.4.2 DTS Architecture -- 9.4.3 DTS Resilience Survey -- 9.4.3.1 DTS Resilience Survey Design -- 9.4.3.2 DTS Resilience Survey Conduct -- 9.5 Research Findings and Future Directions -- References -- Chapter 10 Integrating New Technology into the Complex System of Air Combat Training* -- 10.1 Introduction -- 10.2 Method -- 10.2.1 Data Collection -- 10.2.2 Data Analysis -- 10.3 Results and Discussion -- 10.3.1 Unseen Aircraft Within Visual Range -- 10.3.2 Unexpected Virtual and Constructive Aircraft Behavior -- 10.3.3 Complacency and Increased Risk Taking -- 10.3.4 Human-Machine Interaction -- 10.3.5 Exercise Management -- 10.3.6 Big Picture Awareness -- 10.3.7 Negative Transfer of Training to the Operational Environment -- 10.4 Conclusion -- Acknowledgments -- References -- Section 4 Considering Human Characteristics -- Chapter 11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering -- 11.1 Introduction -- 11.2 Human Systems Engineering and Human Data Engineering -- 11.3 Human-Centered System Design -- 11.4 Practical Issues Leading to Large Complex Blockchain System Development -- 11.4.1 Human-Centered Operational Risk Management -- 11.4.2 Issues Leading to Risk Management Innovation Through Blockchain -- 11.4.3 Issues in Engineering Trustworthy Private Blockchain -- 11.5 Framework for Rapid Human Systems-Human Data Engineering -- 11.6 Human Systems Engineering for Trustworthy Blockchain | |
505 | 8 | |a 11.6.1 Engineering Trustworthy Blockchain -- 11.6.2 Issues and Challenges in Trustworthy Private Blockchain -- 11.6.3 Concepts Used in Trustworthy Private Blockchain -- 11.6.4 Prototype Scenario for Trusted Blockchain Network -- 11.6.5 Systems Engineering of the Chain of Trust -- 11.6.6 Design Public Key Infrastructure (PKI) for Trust -- 11.6.6.1 Design of Certificate Authority (CA) -- 11.6.6.2 Design the Trusted Gateways -- 11.6.6.3 Involving Trusted Peers and Orderers -- 11.6.6.4 Facilitate Trust Through Channels -- 11.7 From Human System Interaction to Human Data Interaction -- 11.8 Future Work for Trust in Human Systems Engineering -- 11.8.1 Software Engineering of Trust for Large Engineered Complex Systems -- 11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems -- 11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future -- 11.9 Conclusion -- Acknowledgment -- References -- Chapter 12 Light's Properties and Power in Facilitating Organizational Change -- 12.1 Introduction -- 12.2 Implicit Properties and a Mathematical Model of Light -- 12.3 Materialization of Light -- 12.3.1 The Electromagnetic Spectrum -- 12.3.2 Quantum Particles -- 12.3.3 The Periodic Table and Atoms -- 12.3.4 A Living Cell -- 12.3.5 Fundamental Capacities of Self -- 12.4 Leveraging Light to Bring About Organizational Change -- 12.5 Summary and Conclusion -- References -- Section 5 From the Field -- Chapter 13 Observations of Real-Time Control Room Simulation -- 13.1 Introduction -- 13.1.1 What Is a "Real-Time Control Room Simulator"? -- 13.1.2 What Is It Used For? -- 13.1.3 What Does It Look Like? -- 13.1.4 How Will They Develop? -- 13.2 Future General-Purpose Simulators -- 13.2.1 Future On-Site Simulators -- 13.3 Operators -- 13.4 Data -- 13.5 Measurement -- 13.5.1 Objective Measures -- 13.5.1.1 Recommended | |
505 | 8 | |a 13.5.1.2 Not Recommended | |
650 | 4 | |a Systems engineering.. | |
650 | 4 | |a Human engineering | |
700 | 1 | |a Tolk, Andreas |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Handley, Holly A. H. |t A Framework of Human Systems Engineering |d Newark : John Wiley & Sons, Incorporated,c2021 |z 9781119698753 |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-35-WEL | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032844610 | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9289918 |l DE-573 |p ZDB-35-WEL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818988255719194624 |
---|---|
any_adam_object | |
author | Handley, Holly A. H. |
author_facet | Handley, Holly A. H. |
author_role | aut |
author_sort | Handley, Holly A. H. |
author_variant | h a h h hah hahh |
building | Verbundindex |
bvnumber | BV047442458 |
collection | ZDB-30-PQE ZDB-35-WEL |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- Contributors List -- Foreword -- Preface -- Section 1 Sociotechnical System Types -- Chapter 1 Introduction to the Human Systems Engineering Framework -- 1.1 Introduction -- 1.2 Human-Centered Disciplines -- 1.3 Human Systems Engineering -- 1.4 Development of the HSE Framework -- 1.5 HSE Applications -- 1.6 Conclusion -- References -- Chapter 2 Human Interface Considerations for Situational Awareness -- 2.1 Introduction -- 2.2 Situational Awareness: A Global Challenge -- 2.3 Putting Situational Awareness in Context: First Responders -- 2.4 Deep Dive on Human Interface Considerations -- 2.5 Putting Human Interface Considerations in Context: Safe Cities -- 2.6 Human Interface Considerations for Privacy-Aware SA -- Reference -- Chapter 3 Utilizing Artificial Intelligence to Make Systems Engineering More Human* -- 3.1 Introduction -- 3.2 Changing Business Needs Drive Changes in Systems Engineering -- 3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem -- 3.3.1 A Conceptual Architecture for Epoch 4 -- 3.3.2 Temporal Sociotechnical Measures -- 3.3.3 Systems Engineering Frameworks -- 3.3.3.1 Sociotechnical Network Models -- 3.3.3.2 Digital Twins -- 3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems -- 3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures -- 3.6 AI in Systems Engineering Frameworks -- 3.7 AI in Sociotechnical Network Models -- 3.8 AI-Based Digital Twins -- 3.9 Discussion -- 3.10 Case Study -- 3.11 Systems Engineering Sociotechnical Modeling Approach -- 3.11.1 Modeling the Project -- 3.12 Results -- 3.13 Summary -- References -- Chapter 4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming -- 4.1 Introduction -- 4.2 Trust in Successful Teaming 4.3 Meaningful Human-Autonomy Teaming -- 4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS -- 4.5 Ensuring Successful SAS -- 4.6 Developing Case Study: Airborne Shepherding SAS -- 4.7 Conclusion -- Acknowledgment -- References -- Section 2 Domain Deep Dives -- Chapter 5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail -- 5.1 Introduction -- 5.2 Organizational System Evolution -- 5.2.1 Characteristics of Organizational Systems -- 5.2.2 The Organization in Flux -- 5.2.3 Introducing New Technologies -- 5.3 Model-Based Systems Engineering -- 5.4 Modeling Approach for the Development of OCMM -- 5.4.1 Technology Specification -- 5.4.2 Capture System Change -- 5.4.3 Capture Organizational Changes -- 5.4.4 Manage Organization Change -- 5.4.5 Analyze Emergent System -- 5.5 Implementation -- 5.5.1 User Portals -- 5.5.2 OCMM Metamodel -- 5.6 Case Study: Digital Transformation in the Rail Industry -- 5.6.1 Technology Specification -- 5.6.2 Capture System Change -- 5.6.3 Capture Organization Changes -- 5.6.4 Organization Change Management -- 5.6.5 Analyze Emergent System -- 5.7 OCMM Reception -- 5.8 Summary and Conclusions -- References -- Chapter 6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle -- 6.1 Introduction -- 6.2 Spacecraft History -- 6.2.1 Mercury/Gemini/Apollo -- 6.2.2 Space Shuttle -- 6.2.3 International Space Station -- 6.2.4 Orion Spacecraft -- 6.3 in the NASA Systems Engineering Process -- 6.3.1 NASA Systems Engineering Process and HSI -- 6.4 Mission Challenges -- 6.4.1 Innovation and Future Vehicle Designs Challenge -- 6.4.2 Operations Challenges -- 6.4.3 Maintainability and Supportability Challenges -- 6.4.4 Habitability and Environment Challenges -- 6.4.5 Safety Challenges -- 6.4.6 Training Challenges -- 6.5 Conclusions -- References Chapter 7 Aerospace Human Systems Integration Evolution over the Last 40 Years -- 7.1 Introduction -- 7.2 Evolution of Aviation: A Human Systems Integration Perspective -- 7.3 Evolution with Respect to Models, Human Roles, and Disciplines -- 7.3.1 From Single-Agent Interaction to Multi-agent Integration -- 7.3.2 Systems Management and Authority Sharing -- 7.3.3 Human-Centered Disciplines Involved -- 7.3.4 From Automation Issues to Tangibility Issues -- 7.4 From Rigid Automation to Flexible Autonomy -- 7.5 How Software Took the Lead on Hardware -- 7.6 Toward a Human-Centered Systemic Framework -- 7.6.1 System of Systems, Physical and Cognitive Structures and Functions -- 7.6.2 Emergent Behaviors and Properties -- 7.6.3 System of Systems Properties -- 7.7 Conclusion and Perspectives -- References -- Section 3 Focus on Training and Skill Sets -- Chapter 8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees -- 8.1 Introduction -- 8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis -- 8.1.2 Generational Differences in Learning -- 8.2 Virtual Technologies in Aviation -- 8.2.1 Potential Approaches for Incorporating Virtual Technologies -- 8.3 Human Systems Engineering Challenges -- 8.4 Potential Applications Beyond Aviation Training -- 8.5 Looking Forward -- Acknowledgement -- References -- Chapter 9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense -- 9.1 Introduction -- 9.2 Defense Training System -- 9.2.1 DTS Conceptualization -- 9.2.2 DTS as an Extended Enterprise Systems -- 9.2.3 Example: Navy Training System -- 9.2.3.1 Navy Training System as a Part of DTS -- 9.2.3.2 Navy Training System as a Part of DoD -- 9.3 Concept of Resilience in the Academic Literature 9.3.1 Definition of Resilience: A Multidisciplinary and Historical View -- 9.3.2 Definition of Resilience: Key Aspects -- 9.3.2.1 What? (Resilience Is and Is Not) -- 9.3.2.2 Why? (Resilience Triggers) -- 9.3.2.3 How? (Resilience Mechanisms and Measures) -- 9.4 DTS Case Study Methodology -- 9.4.1 DTS Resilience Measurement Methodology -- 9.4.2 DTS Architecture -- 9.4.3 DTS Resilience Survey -- 9.4.3.1 DTS Resilience Survey Design -- 9.4.3.2 DTS Resilience Survey Conduct -- 9.5 Research Findings and Future Directions -- References -- Chapter 10 Integrating New Technology into the Complex System of Air Combat Training* -- 10.1 Introduction -- 10.2 Method -- 10.2.1 Data Collection -- 10.2.2 Data Analysis -- 10.3 Results and Discussion -- 10.3.1 Unseen Aircraft Within Visual Range -- 10.3.2 Unexpected Virtual and Constructive Aircraft Behavior -- 10.3.3 Complacency and Increased Risk Taking -- 10.3.4 Human-Machine Interaction -- 10.3.5 Exercise Management -- 10.3.6 Big Picture Awareness -- 10.3.7 Negative Transfer of Training to the Operational Environment -- 10.4 Conclusion -- Acknowledgments -- References -- Section 4 Considering Human Characteristics -- Chapter 11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering -- 11.1 Introduction -- 11.2 Human Systems Engineering and Human Data Engineering -- 11.3 Human-Centered System Design -- 11.4 Practical Issues Leading to Large Complex Blockchain System Development -- 11.4.1 Human-Centered Operational Risk Management -- 11.4.2 Issues Leading to Risk Management Innovation Through Blockchain -- 11.4.3 Issues in Engineering Trustworthy Private Blockchain -- 11.5 Framework for Rapid Human Systems-Human Data Engineering -- 11.6 Human Systems Engineering for Trustworthy Blockchain 11.6.1 Engineering Trustworthy Blockchain -- 11.6.2 Issues and Challenges in Trustworthy Private Blockchain -- 11.6.3 Concepts Used in Trustworthy Private Blockchain -- 11.6.4 Prototype Scenario for Trusted Blockchain Network -- 11.6.5 Systems Engineering of the Chain of Trust -- 11.6.6 Design Public Key Infrastructure (PKI) for Trust -- 11.6.6.1 Design of Certificate Authority (CA) -- 11.6.6.2 Design the Trusted Gateways -- 11.6.6.3 Involving Trusted Peers and Orderers -- 11.6.6.4 Facilitate Trust Through Channels -- 11.7 From Human System Interaction to Human Data Interaction -- 11.8 Future Work for Trust in Human Systems Engineering -- 11.8.1 Software Engineering of Trust for Large Engineered Complex Systems -- 11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems -- 11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future -- 11.9 Conclusion -- Acknowledgment -- References -- Chapter 12 Light's Properties and Power in Facilitating Organizational Change -- 12.1 Introduction -- 12.2 Implicit Properties and a Mathematical Model of Light -- 12.3 Materialization of Light -- 12.3.1 The Electromagnetic Spectrum -- 12.3.2 Quantum Particles -- 12.3.3 The Periodic Table and Atoms -- 12.3.4 A Living Cell -- 12.3.5 Fundamental Capacities of Self -- 12.4 Leveraging Light to Bring About Organizational Change -- 12.5 Summary and Conclusion -- References -- Section 5 From the Field -- Chapter 13 Observations of Real-Time Control Room Simulation -- 13.1 Introduction -- 13.1.1 What Is a "Real-Time Control Room Simulator"? -- 13.1.2 What Is It Used For? -- 13.1.3 What Does It Look Like? -- 13.1.4 How Will They Develop? -- 13.2 Future General-Purpose Simulators -- 13.2.1 Future On-Site Simulators -- 13.3 Operators -- 13.4 Data -- 13.5 Measurement -- 13.5.1 Objective Measures -- 13.5.1.1 Recommended 13.5.1.2 Not Recommended |
ctrlnum | (ZDB-30-PQE)EBC6420052 (ZDB-30-PAD)EBC6420052 (ZDB-89-EBL)EBL6420052 (OCoLC)1226580774 (DE-599)BVBBV047442458 |
dewey-full | 620.82 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.82 |
dewey-search | 620.82 |
dewey-sort | 3620.82 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11021nam a2200493zc 4500</leader><controlfield tag="001">BV047442458</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210827s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119698760</subfield><subfield code="9">978-1-119-69876-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119698777</subfield><subfield code="9">978-1-119-69877-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6420052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6420052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6420052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1226580774</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047442458</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.82</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Handley, Holly A. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Framework of Human Systems Engineering</subfield><subfield code="b">Applications and Case Studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (301 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- Contributors List -- Foreword -- Preface -- Section 1 Sociotechnical System Types -- Chapter 1 Introduction to the Human Systems Engineering Framework -- 1.1 Introduction -- 1.2 Human-Centered Disciplines -- 1.3 Human Systems Engineering -- 1.4 Development of the HSE Framework -- 1.5 HSE Applications -- 1.6 Conclusion -- References -- Chapter 2 Human Interface Considerations for Situational Awareness -- 2.1 Introduction -- 2.2 Situational Awareness: A Global Challenge -- 2.3 Putting Situational Awareness in Context: First Responders -- 2.4 Deep Dive on Human Interface Considerations -- 2.5 Putting Human Interface Considerations in Context: Safe Cities -- 2.6 Human Interface Considerations for Privacy-Aware SA -- Reference -- Chapter 3 Utilizing Artificial Intelligence to Make Systems Engineering More Human* -- 3.1 Introduction -- 3.2 Changing Business Needs Drive Changes in Systems Engineering -- 3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem -- 3.3.1 A Conceptual Architecture for Epoch 4 -- 3.3.2 Temporal Sociotechnical Measures -- 3.3.3 Systems Engineering Frameworks -- 3.3.3.1 Sociotechnical Network Models -- 3.3.3.2 Digital Twins -- 3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems -- 3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures -- 3.6 AI in Systems Engineering Frameworks -- 3.7 AI in Sociotechnical Network Models -- 3.8 AI-Based Digital Twins -- 3.9 Discussion -- 3.10 Case Study -- 3.11 Systems Engineering Sociotechnical Modeling Approach -- 3.11.1 Modeling the Project -- 3.12 Results -- 3.13 Summary -- References -- Chapter 4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming -- 4.1 Introduction -- 4.2 Trust in Successful Teaming</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Meaningful Human-Autonomy Teaming -- 4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS -- 4.5 Ensuring Successful SAS -- 4.6 Developing Case Study: Airborne Shepherding SAS -- 4.7 Conclusion -- Acknowledgment -- References -- Section 2 Domain Deep Dives -- Chapter 5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail -- 5.1 Introduction -- 5.2 Organizational System Evolution -- 5.2.1 Characteristics of Organizational Systems -- 5.2.2 The Organization in Flux -- 5.2.3 Introducing New Technologies -- 5.3 Model-Based Systems Engineering -- 5.4 Modeling Approach for the Development of OCMM -- 5.4.1 Technology Specification -- 5.4.2 Capture System Change -- 5.4.3 Capture Organizational Changes -- 5.4.4 Manage Organization Change -- 5.4.5 Analyze Emergent System -- 5.5 Implementation -- 5.5.1 User Portals -- 5.5.2 OCMM Metamodel -- 5.6 Case Study: Digital Transformation in the Rail Industry -- 5.6.1 Technology Specification -- 5.6.2 Capture System Change -- 5.6.3 Capture Organization Changes -- 5.6.4 Organization Change Management -- 5.6.5 Analyze Emergent System -- 5.7 OCMM Reception -- 5.8 Summary and Conclusions -- References -- Chapter 6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle -- 6.1 Introduction -- 6.2 Spacecraft History -- 6.2.1 Mercury/Gemini/Apollo -- 6.2.2 Space Shuttle -- 6.2.3 International Space Station -- 6.2.4 Orion Spacecraft -- 6.3 in the NASA Systems Engineering Process -- 6.3.1 NASA Systems Engineering Process and HSI -- 6.4 Mission Challenges -- 6.4.1 Innovation and Future Vehicle Designs Challenge -- 6.4.2 Operations Challenges -- 6.4.3 Maintainability and Supportability Challenges -- 6.4.4 Habitability and Environment Challenges -- 6.4.5 Safety Challenges -- 6.4.6 Training Challenges -- 6.5 Conclusions -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 7 Aerospace Human Systems Integration Evolution over the Last 40 Years -- 7.1 Introduction -- 7.2 Evolution of Aviation: A Human Systems Integration Perspective -- 7.3 Evolution with Respect to Models, Human Roles, and Disciplines -- 7.3.1 From Single-Agent Interaction to Multi-agent Integration -- 7.3.2 Systems Management and Authority Sharing -- 7.3.3 Human-Centered Disciplines Involved -- 7.3.4 From Automation Issues to Tangibility Issues -- 7.4 From Rigid Automation to Flexible Autonomy -- 7.5 How Software Took the Lead on Hardware -- 7.6 Toward a Human-Centered Systemic Framework -- 7.6.1 System of Systems, Physical and Cognitive Structures and Functions -- 7.6.2 Emergent Behaviors and Properties -- 7.6.3 System of Systems Properties -- 7.7 Conclusion and Perspectives -- References -- Section 3 Focus on Training and Skill Sets -- Chapter 8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees -- 8.1 Introduction -- 8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis -- 8.1.2 Generational Differences in Learning -- 8.2 Virtual Technologies in Aviation -- 8.2.1 Potential Approaches for Incorporating Virtual Technologies -- 8.3 Human Systems Engineering Challenges -- 8.4 Potential Applications Beyond Aviation Training -- 8.5 Looking Forward -- Acknowledgement -- References -- Chapter 9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense -- 9.1 Introduction -- 9.2 Defense Training System -- 9.2.1 DTS Conceptualization -- 9.2.2 DTS as an Extended Enterprise Systems -- 9.2.3 Example: Navy Training System -- 9.2.3.1 Navy Training System as a Part of DTS -- 9.2.3.2 Navy Training System as a Part of DoD -- 9.3 Concept of Resilience in the Academic Literature</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.3.1 Definition of Resilience: A Multidisciplinary and Historical View -- 9.3.2 Definition of Resilience: Key Aspects -- 9.3.2.1 What? (Resilience Is and Is Not) -- 9.3.2.2 Why? (Resilience Triggers) -- 9.3.2.3 How? (Resilience Mechanisms and Measures) -- 9.4 DTS Case Study Methodology -- 9.4.1 DTS Resilience Measurement Methodology -- 9.4.2 DTS Architecture -- 9.4.3 DTS Resilience Survey -- 9.4.3.1 DTS Resilience Survey Design -- 9.4.3.2 DTS Resilience Survey Conduct -- 9.5 Research Findings and Future Directions -- References -- Chapter 10 Integrating New Technology into the Complex System of Air Combat Training* -- 10.1 Introduction -- 10.2 Method -- 10.2.1 Data Collection -- 10.2.2 Data Analysis -- 10.3 Results and Discussion -- 10.3.1 Unseen Aircraft Within Visual Range -- 10.3.2 Unexpected Virtual and Constructive Aircraft Behavior -- 10.3.3 Complacency and Increased Risk Taking -- 10.3.4 Human-Machine Interaction -- 10.3.5 Exercise Management -- 10.3.6 Big Picture Awareness -- 10.3.7 Negative Transfer of Training to the Operational Environment -- 10.4 Conclusion -- Acknowledgments -- References -- Section 4 Considering Human Characteristics -- Chapter 11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering -- 11.1 Introduction -- 11.2 Human Systems Engineering and Human Data Engineering -- 11.3 Human-Centered System Design -- 11.4 Practical Issues Leading to Large Complex Blockchain System Development -- 11.4.1 Human-Centered Operational Risk Management -- 11.4.2 Issues Leading to Risk Management Innovation Through Blockchain -- 11.4.3 Issues in Engineering Trustworthy Private Blockchain -- 11.5 Framework for Rapid Human Systems-Human Data Engineering -- 11.6 Human Systems Engineering for Trustworthy Blockchain</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.6.1 Engineering Trustworthy Blockchain -- 11.6.2 Issues and Challenges in Trustworthy Private Blockchain -- 11.6.3 Concepts Used in Trustworthy Private Blockchain -- 11.6.4 Prototype Scenario for Trusted Blockchain Network -- 11.6.5 Systems Engineering of the Chain of Trust -- 11.6.6 Design Public Key Infrastructure (PKI) for Trust -- 11.6.6.1 Design of Certificate Authority (CA) -- 11.6.6.2 Design the Trusted Gateways -- 11.6.6.3 Involving Trusted Peers and Orderers -- 11.6.6.4 Facilitate Trust Through Channels -- 11.7 From Human System Interaction to Human Data Interaction -- 11.8 Future Work for Trust in Human Systems Engineering -- 11.8.1 Software Engineering of Trust for Large Engineered Complex Systems -- 11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems -- 11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future -- 11.9 Conclusion -- Acknowledgment -- References -- Chapter 12 Light's Properties and Power in Facilitating Organizational Change -- 12.1 Introduction -- 12.2 Implicit Properties and a Mathematical Model of Light -- 12.3 Materialization of Light -- 12.3.1 The Electromagnetic Spectrum -- 12.3.2 Quantum Particles -- 12.3.3 The Periodic Table and Atoms -- 12.3.4 A Living Cell -- 12.3.5 Fundamental Capacities of Self -- 12.4 Leveraging Light to Bring About Organizational Change -- 12.5 Summary and Conclusion -- References -- Section 5 From the Field -- Chapter 13 Observations of Real-Time Control Room Simulation -- 13.1 Introduction -- 13.1.1 What Is a "Real-Time Control Room Simulator"? -- 13.1.2 What Is It Used For? -- 13.1.3 What Does It Look Like? -- 13.1.4 How Will They Develop? -- 13.2 Future General-Purpose Simulators -- 13.2.1 Future On-Site Simulators -- 13.3 Operators -- 13.4 Data -- 13.5 Measurement -- 13.5.1 Objective Measures -- 13.5.1.1 Recommended</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.5.1.2 Not Recommended</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems engineering..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tolk, Andreas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Handley, Holly A. H.</subfield><subfield code="t">A Framework of Human Systems Engineering</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2021</subfield><subfield code="z">9781119698753</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032844610</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9289918</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047442458 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:19:41Z |
institution | BVB |
isbn | 9781119698760 9781119698777 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032844610 |
oclc_num | 1226580774 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (301 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WEL |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Handley, Holly A. H. Verfasser aut A Framework of Human Systems Engineering Applications and Case Studies Newark John Wiley & Sons, Incorporated 2021 ©2021 1 Online-Ressource (301 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- Contributors List -- Foreword -- Preface -- Section 1 Sociotechnical System Types -- Chapter 1 Introduction to the Human Systems Engineering Framework -- 1.1 Introduction -- 1.2 Human-Centered Disciplines -- 1.3 Human Systems Engineering -- 1.4 Development of the HSE Framework -- 1.5 HSE Applications -- 1.6 Conclusion -- References -- Chapter 2 Human Interface Considerations for Situational Awareness -- 2.1 Introduction -- 2.2 Situational Awareness: A Global Challenge -- 2.3 Putting Situational Awareness in Context: First Responders -- 2.4 Deep Dive on Human Interface Considerations -- 2.5 Putting Human Interface Considerations in Context: Safe Cities -- 2.6 Human Interface Considerations for Privacy-Aware SA -- Reference -- Chapter 3 Utilizing Artificial Intelligence to Make Systems Engineering More Human* -- 3.1 Introduction -- 3.2 Changing Business Needs Drive Changes in Systems Engineering -- 3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem -- 3.3.1 A Conceptual Architecture for Epoch 4 -- 3.3.2 Temporal Sociotechnical Measures -- 3.3.3 Systems Engineering Frameworks -- 3.3.3.1 Sociotechnical Network Models -- 3.3.3.2 Digital Twins -- 3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems -- 3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures -- 3.6 AI in Systems Engineering Frameworks -- 3.7 AI in Sociotechnical Network Models -- 3.8 AI-Based Digital Twins -- 3.9 Discussion -- 3.10 Case Study -- 3.11 Systems Engineering Sociotechnical Modeling Approach -- 3.11.1 Modeling the Project -- 3.12 Results -- 3.13 Summary -- References -- Chapter 4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming -- 4.1 Introduction -- 4.2 Trust in Successful Teaming 4.3 Meaningful Human-Autonomy Teaming -- 4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS -- 4.5 Ensuring Successful SAS -- 4.6 Developing Case Study: Airborne Shepherding SAS -- 4.7 Conclusion -- Acknowledgment -- References -- Section 2 Domain Deep Dives -- Chapter 5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail -- 5.1 Introduction -- 5.2 Organizational System Evolution -- 5.2.1 Characteristics of Organizational Systems -- 5.2.2 The Organization in Flux -- 5.2.3 Introducing New Technologies -- 5.3 Model-Based Systems Engineering -- 5.4 Modeling Approach for the Development of OCMM -- 5.4.1 Technology Specification -- 5.4.2 Capture System Change -- 5.4.3 Capture Organizational Changes -- 5.4.4 Manage Organization Change -- 5.4.5 Analyze Emergent System -- 5.5 Implementation -- 5.5.1 User Portals -- 5.5.2 OCMM Metamodel -- 5.6 Case Study: Digital Transformation in the Rail Industry -- 5.6.1 Technology Specification -- 5.6.2 Capture System Change -- 5.6.3 Capture Organization Changes -- 5.6.4 Organization Change Management -- 5.6.5 Analyze Emergent System -- 5.7 OCMM Reception -- 5.8 Summary and Conclusions -- References -- Chapter 6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle -- 6.1 Introduction -- 6.2 Spacecraft History -- 6.2.1 Mercury/Gemini/Apollo -- 6.2.2 Space Shuttle -- 6.2.3 International Space Station -- 6.2.4 Orion Spacecraft -- 6.3 in the NASA Systems Engineering Process -- 6.3.1 NASA Systems Engineering Process and HSI -- 6.4 Mission Challenges -- 6.4.1 Innovation and Future Vehicle Designs Challenge -- 6.4.2 Operations Challenges -- 6.4.3 Maintainability and Supportability Challenges -- 6.4.4 Habitability and Environment Challenges -- 6.4.5 Safety Challenges -- 6.4.6 Training Challenges -- 6.5 Conclusions -- References Chapter 7 Aerospace Human Systems Integration Evolution over the Last 40 Years -- 7.1 Introduction -- 7.2 Evolution of Aviation: A Human Systems Integration Perspective -- 7.3 Evolution with Respect to Models, Human Roles, and Disciplines -- 7.3.1 From Single-Agent Interaction to Multi-agent Integration -- 7.3.2 Systems Management and Authority Sharing -- 7.3.3 Human-Centered Disciplines Involved -- 7.3.4 From Automation Issues to Tangibility Issues -- 7.4 From Rigid Automation to Flexible Autonomy -- 7.5 How Software Took the Lead on Hardware -- 7.6 Toward a Human-Centered Systemic Framework -- 7.6.1 System of Systems, Physical and Cognitive Structures and Functions -- 7.6.2 Emergent Behaviors and Properties -- 7.6.3 System of Systems Properties -- 7.7 Conclusion and Perspectives -- References -- Section 3 Focus on Training and Skill Sets -- Chapter 8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees -- 8.1 Introduction -- 8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis -- 8.1.2 Generational Differences in Learning -- 8.2 Virtual Technologies in Aviation -- 8.2.1 Potential Approaches for Incorporating Virtual Technologies -- 8.3 Human Systems Engineering Challenges -- 8.4 Potential Applications Beyond Aviation Training -- 8.5 Looking Forward -- Acknowledgement -- References -- Chapter 9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense -- 9.1 Introduction -- 9.2 Defense Training System -- 9.2.1 DTS Conceptualization -- 9.2.2 DTS as an Extended Enterprise Systems -- 9.2.3 Example: Navy Training System -- 9.2.3.1 Navy Training System as a Part of DTS -- 9.2.3.2 Navy Training System as a Part of DoD -- 9.3 Concept of Resilience in the Academic Literature 9.3.1 Definition of Resilience: A Multidisciplinary and Historical View -- 9.3.2 Definition of Resilience: Key Aspects -- 9.3.2.1 What? (Resilience Is and Is Not) -- 9.3.2.2 Why? (Resilience Triggers) -- 9.3.2.3 How? (Resilience Mechanisms and Measures) -- 9.4 DTS Case Study Methodology -- 9.4.1 DTS Resilience Measurement Methodology -- 9.4.2 DTS Architecture -- 9.4.3 DTS Resilience Survey -- 9.4.3.1 DTS Resilience Survey Design -- 9.4.3.2 DTS Resilience Survey Conduct -- 9.5 Research Findings and Future Directions -- References -- Chapter 10 Integrating New Technology into the Complex System of Air Combat Training* -- 10.1 Introduction -- 10.2 Method -- 10.2.1 Data Collection -- 10.2.2 Data Analysis -- 10.3 Results and Discussion -- 10.3.1 Unseen Aircraft Within Visual Range -- 10.3.2 Unexpected Virtual and Constructive Aircraft Behavior -- 10.3.3 Complacency and Increased Risk Taking -- 10.3.4 Human-Machine Interaction -- 10.3.5 Exercise Management -- 10.3.6 Big Picture Awareness -- 10.3.7 Negative Transfer of Training to the Operational Environment -- 10.4 Conclusion -- Acknowledgments -- References -- Section 4 Considering Human Characteristics -- Chapter 11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering -- 11.1 Introduction -- 11.2 Human Systems Engineering and Human Data Engineering -- 11.3 Human-Centered System Design -- 11.4 Practical Issues Leading to Large Complex Blockchain System Development -- 11.4.1 Human-Centered Operational Risk Management -- 11.4.2 Issues Leading to Risk Management Innovation Through Blockchain -- 11.4.3 Issues in Engineering Trustworthy Private Blockchain -- 11.5 Framework for Rapid Human Systems-Human Data Engineering -- 11.6 Human Systems Engineering for Trustworthy Blockchain 11.6.1 Engineering Trustworthy Blockchain -- 11.6.2 Issues and Challenges in Trustworthy Private Blockchain -- 11.6.3 Concepts Used in Trustworthy Private Blockchain -- 11.6.4 Prototype Scenario for Trusted Blockchain Network -- 11.6.5 Systems Engineering of the Chain of Trust -- 11.6.6 Design Public Key Infrastructure (PKI) for Trust -- 11.6.6.1 Design of Certificate Authority (CA) -- 11.6.6.2 Design the Trusted Gateways -- 11.6.6.3 Involving Trusted Peers and Orderers -- 11.6.6.4 Facilitate Trust Through Channels -- 11.7 From Human System Interaction to Human Data Interaction -- 11.8 Future Work for Trust in Human Systems Engineering -- 11.8.1 Software Engineering of Trust for Large Engineered Complex Systems -- 11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems -- 11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future -- 11.9 Conclusion -- Acknowledgment -- References -- Chapter 12 Light's Properties and Power in Facilitating Organizational Change -- 12.1 Introduction -- 12.2 Implicit Properties and a Mathematical Model of Light -- 12.3 Materialization of Light -- 12.3.1 The Electromagnetic Spectrum -- 12.3.2 Quantum Particles -- 12.3.3 The Periodic Table and Atoms -- 12.3.4 A Living Cell -- 12.3.5 Fundamental Capacities of Self -- 12.4 Leveraging Light to Bring About Organizational Change -- 12.5 Summary and Conclusion -- References -- Section 5 From the Field -- Chapter 13 Observations of Real-Time Control Room Simulation -- 13.1 Introduction -- 13.1.1 What Is a "Real-Time Control Room Simulator"? -- 13.1.2 What Is It Used For? -- 13.1.3 What Does It Look Like? -- 13.1.4 How Will They Develop? -- 13.2 Future General-Purpose Simulators -- 13.2.1 Future On-Site Simulators -- 13.3 Operators -- 13.4 Data -- 13.5 Measurement -- 13.5.1 Objective Measures -- 13.5.1.1 Recommended 13.5.1.2 Not Recommended Systems engineering.. Human engineering Tolk, Andreas Sonstige oth Erscheint auch als Druck-Ausgabe Handley, Holly A. H. A Framework of Human Systems Engineering Newark : John Wiley & Sons, Incorporated,c2021 9781119698753 |
spellingShingle | Handley, Holly A. H. A Framework of Human Systems Engineering Applications and Case Studies Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- Contributors List -- Foreword -- Preface -- Section 1 Sociotechnical System Types -- Chapter 1 Introduction to the Human Systems Engineering Framework -- 1.1 Introduction -- 1.2 Human-Centered Disciplines -- 1.3 Human Systems Engineering -- 1.4 Development of the HSE Framework -- 1.5 HSE Applications -- 1.6 Conclusion -- References -- Chapter 2 Human Interface Considerations for Situational Awareness -- 2.1 Introduction -- 2.2 Situational Awareness: A Global Challenge -- 2.3 Putting Situational Awareness in Context: First Responders -- 2.4 Deep Dive on Human Interface Considerations -- 2.5 Putting Human Interface Considerations in Context: Safe Cities -- 2.6 Human Interface Considerations for Privacy-Aware SA -- Reference -- Chapter 3 Utilizing Artificial Intelligence to Make Systems Engineering More Human* -- 3.1 Introduction -- 3.2 Changing Business Needs Drive Changes in Systems Engineering -- 3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem -- 3.3.1 A Conceptual Architecture for Epoch 4 -- 3.3.2 Temporal Sociotechnical Measures -- 3.3.3 Systems Engineering Frameworks -- 3.3.3.1 Sociotechnical Network Models -- 3.3.3.2 Digital Twins -- 3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems -- 3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures -- 3.6 AI in Systems Engineering Frameworks -- 3.7 AI in Sociotechnical Network Models -- 3.8 AI-Based Digital Twins -- 3.9 Discussion -- 3.10 Case Study -- 3.11 Systems Engineering Sociotechnical Modeling Approach -- 3.11.1 Modeling the Project -- 3.12 Results -- 3.13 Summary -- References -- Chapter 4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming -- 4.1 Introduction -- 4.2 Trust in Successful Teaming 4.3 Meaningful Human-Autonomy Teaming -- 4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS -- 4.5 Ensuring Successful SAS -- 4.6 Developing Case Study: Airborne Shepherding SAS -- 4.7 Conclusion -- Acknowledgment -- References -- Section 2 Domain Deep Dives -- Chapter 5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail -- 5.1 Introduction -- 5.2 Organizational System Evolution -- 5.2.1 Characteristics of Organizational Systems -- 5.2.2 The Organization in Flux -- 5.2.3 Introducing New Technologies -- 5.3 Model-Based Systems Engineering -- 5.4 Modeling Approach for the Development of OCMM -- 5.4.1 Technology Specification -- 5.4.2 Capture System Change -- 5.4.3 Capture Organizational Changes -- 5.4.4 Manage Organization Change -- 5.4.5 Analyze Emergent System -- 5.5 Implementation -- 5.5.1 User Portals -- 5.5.2 OCMM Metamodel -- 5.6 Case Study: Digital Transformation in the Rail Industry -- 5.6.1 Technology Specification -- 5.6.2 Capture System Change -- 5.6.3 Capture Organization Changes -- 5.6.4 Organization Change Management -- 5.6.5 Analyze Emergent System -- 5.7 OCMM Reception -- 5.8 Summary and Conclusions -- References -- Chapter 6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle -- 6.1 Introduction -- 6.2 Spacecraft History -- 6.2.1 Mercury/Gemini/Apollo -- 6.2.2 Space Shuttle -- 6.2.3 International Space Station -- 6.2.4 Orion Spacecraft -- 6.3 in the NASA Systems Engineering Process -- 6.3.1 NASA Systems Engineering Process and HSI -- 6.4 Mission Challenges -- 6.4.1 Innovation and Future Vehicle Designs Challenge -- 6.4.2 Operations Challenges -- 6.4.3 Maintainability and Supportability Challenges -- 6.4.4 Habitability and Environment Challenges -- 6.4.5 Safety Challenges -- 6.4.6 Training Challenges -- 6.5 Conclusions -- References Chapter 7 Aerospace Human Systems Integration Evolution over the Last 40 Years -- 7.1 Introduction -- 7.2 Evolution of Aviation: A Human Systems Integration Perspective -- 7.3 Evolution with Respect to Models, Human Roles, and Disciplines -- 7.3.1 From Single-Agent Interaction to Multi-agent Integration -- 7.3.2 Systems Management and Authority Sharing -- 7.3.3 Human-Centered Disciplines Involved -- 7.3.4 From Automation Issues to Tangibility Issues -- 7.4 From Rigid Automation to Flexible Autonomy -- 7.5 How Software Took the Lead on Hardware -- 7.6 Toward a Human-Centered Systemic Framework -- 7.6.1 System of Systems, Physical and Cognitive Structures and Functions -- 7.6.2 Emergent Behaviors and Properties -- 7.6.3 System of Systems Properties -- 7.7 Conclusion and Perspectives -- References -- Section 3 Focus on Training and Skill Sets -- Chapter 8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees -- 8.1 Introduction -- 8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis -- 8.1.2 Generational Differences in Learning -- 8.2 Virtual Technologies in Aviation -- 8.2.1 Potential Approaches for Incorporating Virtual Technologies -- 8.3 Human Systems Engineering Challenges -- 8.4 Potential Applications Beyond Aviation Training -- 8.5 Looking Forward -- Acknowledgement -- References -- Chapter 9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense -- 9.1 Introduction -- 9.2 Defense Training System -- 9.2.1 DTS Conceptualization -- 9.2.2 DTS as an Extended Enterprise Systems -- 9.2.3 Example: Navy Training System -- 9.2.3.1 Navy Training System as a Part of DTS -- 9.2.3.2 Navy Training System as a Part of DoD -- 9.3 Concept of Resilience in the Academic Literature 9.3.1 Definition of Resilience: A Multidisciplinary and Historical View -- 9.3.2 Definition of Resilience: Key Aspects -- 9.3.2.1 What? (Resilience Is and Is Not) -- 9.3.2.2 Why? (Resilience Triggers) -- 9.3.2.3 How? (Resilience Mechanisms and Measures) -- 9.4 DTS Case Study Methodology -- 9.4.1 DTS Resilience Measurement Methodology -- 9.4.2 DTS Architecture -- 9.4.3 DTS Resilience Survey -- 9.4.3.1 DTS Resilience Survey Design -- 9.4.3.2 DTS Resilience Survey Conduct -- 9.5 Research Findings and Future Directions -- References -- Chapter 10 Integrating New Technology into the Complex System of Air Combat Training* -- 10.1 Introduction -- 10.2 Method -- 10.2.1 Data Collection -- 10.2.2 Data Analysis -- 10.3 Results and Discussion -- 10.3.1 Unseen Aircraft Within Visual Range -- 10.3.2 Unexpected Virtual and Constructive Aircraft Behavior -- 10.3.3 Complacency and Increased Risk Taking -- 10.3.4 Human-Machine Interaction -- 10.3.5 Exercise Management -- 10.3.6 Big Picture Awareness -- 10.3.7 Negative Transfer of Training to the Operational Environment -- 10.4 Conclusion -- Acknowledgments -- References -- Section 4 Considering Human Characteristics -- Chapter 11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering -- 11.1 Introduction -- 11.2 Human Systems Engineering and Human Data Engineering -- 11.3 Human-Centered System Design -- 11.4 Practical Issues Leading to Large Complex Blockchain System Development -- 11.4.1 Human-Centered Operational Risk Management -- 11.4.2 Issues Leading to Risk Management Innovation Through Blockchain -- 11.4.3 Issues in Engineering Trustworthy Private Blockchain -- 11.5 Framework for Rapid Human Systems-Human Data Engineering -- 11.6 Human Systems Engineering for Trustworthy Blockchain 11.6.1 Engineering Trustworthy Blockchain -- 11.6.2 Issues and Challenges in Trustworthy Private Blockchain -- 11.6.3 Concepts Used in Trustworthy Private Blockchain -- 11.6.4 Prototype Scenario for Trusted Blockchain Network -- 11.6.5 Systems Engineering of the Chain of Trust -- 11.6.6 Design Public Key Infrastructure (PKI) for Trust -- 11.6.6.1 Design of Certificate Authority (CA) -- 11.6.6.2 Design the Trusted Gateways -- 11.6.6.3 Involving Trusted Peers and Orderers -- 11.6.6.4 Facilitate Trust Through Channels -- 11.7 From Human System Interaction to Human Data Interaction -- 11.8 Future Work for Trust in Human Systems Engineering -- 11.8.1 Software Engineering of Trust for Large Engineered Complex Systems -- 11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems -- 11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future -- 11.9 Conclusion -- Acknowledgment -- References -- Chapter 12 Light's Properties and Power in Facilitating Organizational Change -- 12.1 Introduction -- 12.2 Implicit Properties and a Mathematical Model of Light -- 12.3 Materialization of Light -- 12.3.1 The Electromagnetic Spectrum -- 12.3.2 Quantum Particles -- 12.3.3 The Periodic Table and Atoms -- 12.3.4 A Living Cell -- 12.3.5 Fundamental Capacities of Self -- 12.4 Leveraging Light to Bring About Organizational Change -- 12.5 Summary and Conclusion -- References -- Section 5 From the Field -- Chapter 13 Observations of Real-Time Control Room Simulation -- 13.1 Introduction -- 13.1.1 What Is a "Real-Time Control Room Simulator"? -- 13.1.2 What Is It Used For? -- 13.1.3 What Does It Look Like? -- 13.1.4 How Will They Develop? -- 13.2 Future General-Purpose Simulators -- 13.2.1 Future On-Site Simulators -- 13.3 Operators -- 13.4 Data -- 13.5 Measurement -- 13.5.1 Objective Measures -- 13.5.1.1 Recommended 13.5.1.2 Not Recommended Systems engineering.. Human engineering |
title | A Framework of Human Systems Engineering Applications and Case Studies |
title_auth | A Framework of Human Systems Engineering Applications and Case Studies |
title_exact_search | A Framework of Human Systems Engineering Applications and Case Studies |
title_full | A Framework of Human Systems Engineering Applications and Case Studies |
title_fullStr | A Framework of Human Systems Engineering Applications and Case Studies |
title_full_unstemmed | A Framework of Human Systems Engineering Applications and Case Studies |
title_short | A Framework of Human Systems Engineering |
title_sort | a framework of human systems engineering applications and case studies |
title_sub | Applications and Case Studies |
topic | Systems engineering.. Human engineering |
topic_facet | Systems engineering.. Human engineering |
work_keys_str_mv | AT handleyhollyah aframeworkofhumansystemsengineeringapplicationsandcasestudies AT tolkandreas aframeworkofhumansystemsengineeringapplicationsandcasestudies |