Neural-Symbolic Learning Systems: Foundations and Applications
Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
London
Springer London
2002
|
Ausgabe: | 1st ed. 2002 |
Schriftenreihe: | Perspectives in Neural Computing
|
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-1-4471-0211-3 https://doi.org/10.1007/978-1-4471-0211-3 |
Zusammenfassung: | Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems |
Umfang: | 1 Online-Ressource (XIV, 271 p. 30 illus) |
ISBN: | 9781447102113 |
DOI: | 10.1007/978-1-4471-0211-3 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064096 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2002 xx o|||| 00||| eng d | ||
020 | |a 9781447102113 |9 978-1-4471-0211-3 | ||
024 | 7 | |a 10.1007/978-1-4471-0211-3 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4471-0211-3 | ||
035 | |a (OCoLC)1227476941 | ||
035 | |a (DE-599)BVBBV047064096 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
100 | 1 | |a d'Avila Garcez, Artur S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Neural-Symbolic Learning Systems |b Foundations and Applications |c by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay |
250 | |a 1st ed. 2002 | ||
264 | 1 | |a London |b Springer London |c 2002 | |
300 | |a 1 Online-Ressource (XIV, 271 p. 30 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Perspectives in Neural Computing | |
520 | |a Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems | ||
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Information Systems and Communication Service | |
650 | 4 | |a Communications Engineering, Networks | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Computers | |
650 | 4 | |a Electrical engineering | |
650 | 0 | 7 | |a Symbolverarbeitung |0 (DE-588)4278565-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logische Programmierung |0 (DE-588)4195096-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybrides System |0 (DE-588)4510314-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hybrides System |0 (DE-588)4510314-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 3 | |a Symbolverarbeitung |0 (DE-588)4278565-0 |D s |
689 | 0 | 4 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 0 | 5 | |a Logische Programmierung |0 (DE-588)4195096-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Broda, Krysia B. |4 aut | |
700 | 1 | |a Gabbay, Dov M. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781852335120 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781447102120 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0211-3 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032471208 | |
966 | e | |u https://doi.org/10.1007/978-1-4471-0211-3 |l DE-706 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818987566488092672 |
---|---|
any_adam_object | |
author | d'Avila Garcez, Artur S. Broda, Krysia B. Gabbay, Dov M. |
author_facet | d'Avila Garcez, Artur S. Broda, Krysia B. Gabbay, Dov M. |
author_role | aut aut aut |
author_sort | d'Avila Garcez, Artur S. |
author_variant | g a s d gas gasd k b b kb kbb d m g dm dmg |
building | Verbundindex |
bvnumber | BV047064096 |
classification_rvk | ST 285 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4471-0211-3 (OCoLC)1227476941 (DE-599)BVBBV047064096 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-1-4471-0211-3 |
edition | 1st ed. 2002 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03920nam a2200661zc 4500</leader><controlfield tag="001">BV047064096</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447102113</subfield><subfield code="9">978-1-4471-0211-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0211-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4471-0211-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227476941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064096</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">d'Avila Garcez, Artur S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural-Symbolic Learning Systems</subfield><subfield code="b">Foundations and Applications</subfield><subfield code="c">by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2002</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 271 p. 30 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in Neural Computing</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information Systems and Communication Service</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communications Engineering, Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symbolverarbeitung</subfield><subfield code="0">(DE-588)4278565-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logische Programmierung</subfield><subfield code="0">(DE-588)4195096-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Symbolverarbeitung</subfield><subfield code="0">(DE-588)4278565-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Logische Programmierung</subfield><subfield code="0">(DE-588)4195096-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Broda, Krysia B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gabbay, Dov M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781852335120</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781447102120</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0211-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471208</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4471-0211-3</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064096 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T19:08:43Z |
institution | BVB |
isbn | 9781447102113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471208 |
oclc_num | 1227476941 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XIV, 271 p. 30 illus) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer London |
record_format | marc |
series2 | Perspectives in Neural Computing |
spelling | d'Avila Garcez, Artur S. Verfasser aut Neural-Symbolic Learning Systems Foundations and Applications by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay 1st ed. 2002 London Springer London 2002 1 Online-Ressource (XIV, 271 p. 30 illus) txt rdacontent c rdamedia cr rdacarrier Perspectives in Neural Computing Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems Artificial Intelligence Information Systems and Communication Service Communications Engineering, Networks Artificial intelligence Computers Electrical engineering Symbolverarbeitung (DE-588)4278565-0 gnd rswk-swf Wissensextraktion (DE-588)4546354-2 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Logische Programmierung (DE-588)4195096-3 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Hybrides System (DE-588)4510314-8 gnd rswk-swf Hybrides System (DE-588)4510314-8 s Maschinelles Lernen (DE-588)4193754-5 s Neuronales Netz (DE-588)4226127-2 s Symbolverarbeitung (DE-588)4278565-0 s Wissensextraktion (DE-588)4546354-2 s Logische Programmierung (DE-588)4195096-3 s DE-604 Broda, Krysia B. aut Gabbay, Dov M. aut Erscheint auch als Druck-Ausgabe 9781852335120 Erscheint auch als Druck-Ausgabe 9781447102120 https://doi.org/10.1007/978-1-4471-0211-3 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | d'Avila Garcez, Artur S. Broda, Krysia B. Gabbay, Dov M. Neural-Symbolic Learning Systems Foundations and Applications Artificial Intelligence Information Systems and Communication Service Communications Engineering, Networks Artificial intelligence Computers Electrical engineering Symbolverarbeitung (DE-588)4278565-0 gnd Wissensextraktion (DE-588)4546354-2 gnd Neuronales Netz (DE-588)4226127-2 gnd Logische Programmierung (DE-588)4195096-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Hybrides System (DE-588)4510314-8 gnd |
subject_GND | (DE-588)4278565-0 (DE-588)4546354-2 (DE-588)4226127-2 (DE-588)4195096-3 (DE-588)4193754-5 (DE-588)4510314-8 |
title | Neural-Symbolic Learning Systems Foundations and Applications |
title_auth | Neural-Symbolic Learning Systems Foundations and Applications |
title_exact_search | Neural-Symbolic Learning Systems Foundations and Applications |
title_full | Neural-Symbolic Learning Systems Foundations and Applications by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay |
title_fullStr | Neural-Symbolic Learning Systems Foundations and Applications by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay |
title_full_unstemmed | Neural-Symbolic Learning Systems Foundations and Applications by Artur S. d'Avila Garcez, Krysia B. Broda, Dov M. Gabbay |
title_short | Neural-Symbolic Learning Systems |
title_sort | neural symbolic learning systems foundations and applications |
title_sub | Foundations and Applications |
topic | Artificial Intelligence Information Systems and Communication Service Communications Engineering, Networks Artificial intelligence Computers Electrical engineering Symbolverarbeitung (DE-588)4278565-0 gnd Wissensextraktion (DE-588)4546354-2 gnd Neuronales Netz (DE-588)4226127-2 gnd Logische Programmierung (DE-588)4195096-3 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Hybrides System (DE-588)4510314-8 gnd |
topic_facet | Artificial Intelligence Information Systems and Communication Service Communications Engineering, Networks Artificial intelligence Computers Electrical engineering Symbolverarbeitung Wissensextraktion Neuronales Netz Logische Programmierung Maschinelles Lernen Hybrides System |
url | https://doi.org/10.1007/978-1-4471-0211-3 |
work_keys_str_mv | AT davilagarcezarturs neuralsymboliclearningsystemsfoundationsandapplications AT brodakrysiab neuralsymboliclearningsystemsfoundationsandapplications AT gabbaydovm neuralsymboliclearningsystemsfoundationsandapplications |