Automotive tire noise and vibrations: analysis, measurement and simulation
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States
Butterworth-Heinemann
[2020]
|
Links: | https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272949 |
Beschreibung: | Front Cover -- Automotive Tire Noise and Vibrations -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Background introduction -- References -- 2 Tire/road noise separation: tread pattern noise and road texture noise -- 2.1 Introduction -- 2.2 Close proximity measurement -- 2.3 Tire/road noise separation -- 2.3.1 Two noise components -- 2.3.2 Order tracking analysis -- 2.3.3 Noise separation results -- 2.4 Tire/road wheel noise separation and combination -- 2.5 Conclusion -- Acknowledgments -- References -- 3 Influence of tread pattern on tire/road noise -- 3.1 Introduction -- 3.2 Tire/road noise separation -- 3.3 Tread pattern parameterization -- 3.3.1 Tread profile spectrum -- 3.3.2 Air volume velocity spectrum -- 3.4 Correlation between tread pattern and tire noise -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Influence of road texture on tire/road noise -- 4.1 Introduction -- 4.2 Rough and smooth pavement -- 4.2.1 Total noise -- 4.2.2 Tread pattern noise -- 4.2.3 Nontread pattern noise -- 4.2.4 Percent contribution from the two noise components -- 4.3 Pavement texture characterization -- 4.4 Spectral trend between pavement texture and tire/road noise -- 4.5 Transfer function and regression model -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Measurement methods of tire/road noise -- 5.1 Introduction -- 5.2 Tire noise and vibrations: indoor testing -- 5.2.1 Indoor testing: structural borne noise characterization -- 5.2.1.1 Indoor structural borne noise characterization: stationary tire -- 5.2.1.2 Indoor structural borne noise characterization: rolling tire impact test -- 5.2.1.3 Indoor structural borne noise characterization: high frequency structural borne noise characterization -- 5.2.2 Indoor airborne noise characterization -- 5.3 Outdoor testing -- 5.3.1 Outdoor testing: subjective evaluation 5.3.2 Outdoor testing: objective evaluation -- 5.3.2.1 Outdoor objective evaluation: structural borne noise -- 5.3.2.2 Outdoor objective evaluation: airborne noise -- 5.3.2.3 Outdoor objective evaluation: pass-by noise measurement -- 5.4 Summary -- References -- Further reading -- 6 Generation mechanisms of tire/road noise -- 6.1 Introduction -- 6.2 Tire structural borne noise and airborne noise -- 6.2.1 Tire structural borne noise -- 6.2.2 Tire airborne noise -- 6.3 Tire noise and vibration: generation mechanisms -- 6.3.1 Impact induced noise and vibration -- 6.3.2 Air pumping -- 6.3.3 Friction-induced noise and vibration -- 6.3.4 Tire nonuniformity as a vibration source -- 6.4 Tire structural borne noise transmission mechanism -- 6.4.1 Low frequency transmissibility (below 30Hz) -- 6.4.2 Mid-frequency transmissibility from 30 to 500Hz -- 6.4.3 Effect of rolling on tire transmissibility -- 6.5 Tire noise and vibration amplification by acoustic resonance -- 6.5.1 Tire cavity resonance -- 6.5.2 Tire pipe resonance -- 6.5.3 Tire horn effect -- 6.6 Summary -- References -- Further reading -- 7 Suspension vibration and transfer path analysis -- 7.1 Introduction -- 7.2 Excitations of suspension system from road and tire -- 7.2.1 Excitation from road roughness -- 7.2.2 Excitation generated by tire -- 7.3 Theoretical basis of transfer path analysis method -- 7.3.1 Traditional transfer path analysis method -- 7.3.1.1 Frequency response function -- 7.3.1.2 Identification of structural load -- 7.3.1.3 Analysis of transfer path -- 7.3.2 Operational transfer path analysis -- 7.4 Transfer path analysis of suspension vibration -- 7.4.1 Frequency response function of suspension and car body system -- 7.4.2 Identification of load between suspension and car body -- 7.4.3 Transfer path analysis of suspension vibration 7.5 Transfer path analysis of structure-borne tire/road noise -- 7.5.1 Transfer function of structure-borne noise -- 7.5.2 Identification of load on path point and principal component analysis -- 7.5.3 Analysis of interior noise from tire/road interaction based on transfer path analysis -- 7.5.3.1 Transfer path analysis of structure-borne tire/road noise based on test -- 7.5.3.2 Control of structure-borne tire/road noise based on simulation -- 7.6 Summary -- Nomenclatures -- References -- 8 Structure-borne vibration of tire -- 8.1 Introduction -- 8.2 Modal characteristics of tire vibration and influencing parameters -- 8.2.1 Modal characteristics of tire vibration -- 8.2.2 Influencing parameters of modal characteristics of tire vibration -- 8.2.2.1 Influence of tire pressure -- 8.2.2.2 Influence of tread pattern -- 8.2.2.3 Influence of tire mass -- 8.2.2.4 Influences of belt angle and Young's moduli of belt cord and tread compound -- 8.3 Modal test methods of a tire -- 8.4 Analytical calculation method of tire mode -- 8.4.1 Two-dimensional ring model of a tire -- 8.4.1.1 Strain of ring -- 8.4.1.2 Initial stress -- 8.4.1.3 Velocity of point at middle surface of ring -- 8.4.1.4 Work of inflation pressure -- 8.4.2 Three-dimensional ring model of tire -- 8.4.2.1 Stress and strain of tire crown -- 8.4.2.2 Equations of motion of three-dimensional ring model -- 8.4.2.3 In-plane free vibration mode of a tire -- 8.4.2.4 Out-of-plane free vibration mode of a tire -- 8.5 Modal analysis of a tire based on finite element method -- 8.5.1 Differential equations of a dynamic system -- 8.5.2 Methods of solving natural frequency and modal shape -- 8.5.3 Establishment of finite element model of a tire -- 8.5.4 Natural frequency and modal shape of a tire -- 8.6 Summary -- Nomenclature -- References -- 9 Structural-acoustic analysis of tire cavity system 9.1 Introduction -- 9.2 Frequency and wave number -- 9.3 Tire cavity resonance -- 9.4 Tire-cavity-wheel system -- 9.5 Tire cavity resonance frequency -- 9.5.1 Degenerate tire cavity modes -- 9.6 Tire tread natural frequency and mode shape -- 9.7 Structural-acoustic coupling of tire tread and cavity -- 9.7.1 Impedance-mobility approach -- 9.8 Finite element simulation of tire structural resonance -- 9.9 Finite element simulation of structural-acoustic coupling of tire cavity -- 9.10 Experiment using model from FEM -- 9.11 Effect of loaded tire -- 9.12 Road experiment using internal microphone -- 9.13 Summary -- Nomenclature -- References -- 10 Computer-aided engineering findings on the physics of tire/road noise -- 10.1 Introduction -- 10.2 Computer-aided engineering simulation methodologies -- 10.2.1 Deterministic methods at low frequency -- 10.2.1.1 Finite element method -- 10.2.1.2 Boundary element method -- 10.2.1.3 Waveguide finite element method -- 10.2.2 Energy methods at high frequency -- 10.2.2.1 Statistical energy analysis -- 10.2.2.2 Energy finite element analysis -- 10.2.3 Hybrid methods in the mid frequency range -- 10.3 Other computer-aided engineering simulation methodologies -- 10.3.1 Computational fluid dynamics -- 10.3.2 Transfer path analysis -- 10.4 Vehicle suspension corner module simulation -- 10.5 Mechanisms of the wheel imbalance induced vibration -- 10.6 Tire-road interaction caused by dynamic force variation induced by a hexagon tire -- 10.7 Tire-road interface impact force and friction force-induced vibration -- 10.8 Finite element modeling of tire-pavement interaction -- 10.9 Auralization models of tire/road noise -- 10.10 Trends and challenges in computer-aided engineering modeling of tire/road noise -- 10.11 Summary -- Nomenclature -- References -- 11 Tire cavity noise mitigation using acoustic absorbent materials 11.1 Introduction -- 11.2 Sound absorption coefficient theory -- 11.2.1 Airflow resistivity -- 11.2.2 Empirical models -- 11.2.3 Effect of airflow resistivity -- 11.2.4 Effect of layer thickness -- 11.3 Absorption coefficient measurement methodologies -- 11.3.1 Impedance tube method -- 11.3.2 Alpha cabin -- 11.4 Tire cavity damping loss -- 11.5 Sound absorption with perforated plates, porous materials, and air gaps -- 11.6 Application to tire cavity -- 11.7 Multilayer configuration design -- 11.8 Analytical simulation of the multilayer sound absorber -- 11.9 Using finite element simulation -- 11.10 Experiments on tires -- 11.11 Experimental modal test (impact hammer test) -- 11.12 Experimental modal analysis test with a shaker excitation -- 11.13 Design of experiment (Taguchi) -- 11.14 Summary -- Nomenclature -- References -- 12 Statistical energy analysis of tire/road noise -- 12.1 Introduction -- 12.2 Basic principle of statistical energy analysis -- 12.2.1 Power balance equation of statistical energy analysis -- 12.2.2 Energy description of subsystem -- 12.2.3 Damping loss factor and coupling loss factor -- 12.3 Simulation of tire high-frequency vibration and tire cavity resonance noise -- 12.3.1 Statistical energy analysis model and simulation of tire structure -- 12.3.1.1 Subsystem partition and statistical energy analysis model of a tire -- 12.3.1.2 Parameters in statistical energy analysis model of a tire -- 12.3.1.3 Simulation results and analysis -- 12.3.2 Statistical energy analysis model and simulation of tire cavity system -- 12.3.2.1 Statistical energy analysis model of tire with cavity -- 12.3.2.2 Parameters of statistical energy analysis model and external excitation -- 12.3.2.3 Simulation of tire cavity system using statistical energy analysis -- 12.4 Tire/road noise modeling and simulation using statistical energy analysis 12.4.1 Generation and propagation of tire/road noise |
Umfang: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9780128184103 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV047017305 | ||
003 | DE-604 | ||
005 | 20230928 | ||
007 | cr|uuu---uuuuu | ||
008 | 201119s2020 xx a||| o|||| 00||| eng d | ||
020 | |a 9780128184103 |9 978-0-12-818410-3 | ||
035 | |a (ZDB-30-PQE)EBC6272949 | ||
035 | |a (OCoLC)1224012312 | ||
035 | |a (DE-599)BVBBV047017305 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 629.2482 | |
084 | |a VER 028 |2 stub | ||
245 | 1 | 0 | |a Automotive tire noise and vibrations |b analysis, measurement and simulation |c edited by Xu Wang |
264 | 1 | |a Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States |b Butterworth-Heinemann |c [2020] | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Front Cover -- Automotive Tire Noise and Vibrations -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Background introduction -- References -- 2 Tire/road noise separation: tread pattern noise and road texture noise -- 2.1 Introduction -- 2.2 Close proximity measurement -- 2.3 Tire/road noise separation -- 2.3.1 Two noise components -- 2.3.2 Order tracking analysis -- 2.3.3 Noise separation results -- 2.4 Tire/road wheel noise separation and combination -- 2.5 Conclusion -- Acknowledgments -- References -- 3 Influence of tread pattern on tire/road noise -- 3.1 Introduction -- 3.2 Tire/road noise separation -- 3.3 Tread pattern parameterization -- 3.3.1 Tread profile spectrum -- 3.3.2 Air volume velocity spectrum -- 3.4 Correlation between tread pattern and tire noise -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Influence of road texture on tire/road noise -- 4.1 Introduction -- 4.2 Rough and smooth pavement -- 4.2.1 Total noise -- 4.2.2 Tread pattern noise -- 4.2.3 Nontread pattern noise -- 4.2.4 Percent contribution from the two noise components -- 4.3 Pavement texture characterization -- 4.4 Spectral trend between pavement texture and tire/road noise -- 4.5 Transfer function and regression model -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Measurement methods of tire/road noise -- 5.1 Introduction -- 5.2 Tire noise and vibrations: indoor testing -- 5.2.1 Indoor testing: structural borne noise characterization -- 5.2.1.1 Indoor structural borne noise characterization: stationary tire -- 5.2.1.2 Indoor structural borne noise characterization: rolling tire impact test -- 5.2.1.3 Indoor structural borne noise characterization: high frequency structural borne noise characterization -- 5.2.2 Indoor airborne noise characterization -- 5.3 Outdoor testing -- 5.3.1 Outdoor testing: subjective evaluation | ||
500 | |a 5.3.2 Outdoor testing: objective evaluation -- 5.3.2.1 Outdoor objective evaluation: structural borne noise -- 5.3.2.2 Outdoor objective evaluation: airborne noise -- 5.3.2.3 Outdoor objective evaluation: pass-by noise measurement -- 5.4 Summary -- References -- Further reading -- 6 Generation mechanisms of tire/road noise -- 6.1 Introduction -- 6.2 Tire structural borne noise and airborne noise -- 6.2.1 Tire structural borne noise -- 6.2.2 Tire airborne noise -- 6.3 Tire noise and vibration: generation mechanisms -- 6.3.1 Impact induced noise and vibration -- 6.3.2 Air pumping -- 6.3.3 Friction-induced noise and vibration -- 6.3.4 Tire nonuniformity as a vibration source -- 6.4 Tire structural borne noise transmission mechanism -- 6.4.1 Low frequency transmissibility (below 30Hz) -- 6.4.2 Mid-frequency transmissibility from 30 to 500Hz -- 6.4.3 Effect of rolling on tire transmissibility -- 6.5 Tire noise and vibration amplification by acoustic resonance -- 6.5.1 Tire cavity resonance -- 6.5.2 Tire pipe resonance -- 6.5.3 Tire horn effect -- 6.6 Summary -- References -- Further reading -- 7 Suspension vibration and transfer path analysis -- 7.1 Introduction -- 7.2 Excitations of suspension system from road and tire -- 7.2.1 Excitation from road roughness -- 7.2.2 Excitation generated by tire -- 7.3 Theoretical basis of transfer path analysis method -- 7.3.1 Traditional transfer path analysis method -- 7.3.1.1 Frequency response function -- 7.3.1.2 Identification of structural load -- 7.3.1.3 Analysis of transfer path -- 7.3.2 Operational transfer path analysis -- 7.4 Transfer path analysis of suspension vibration -- 7.4.1 Frequency response function of suspension and car body system -- 7.4.2 Identification of load between suspension and car body -- 7.4.3 Transfer path analysis of suspension vibration | ||
500 | |a 7.5 Transfer path analysis of structure-borne tire/road noise -- 7.5.1 Transfer function of structure-borne noise -- 7.5.2 Identification of load on path point and principal component analysis -- 7.5.3 Analysis of interior noise from tire/road interaction based on transfer path analysis -- 7.5.3.1 Transfer path analysis of structure-borne tire/road noise based on test -- 7.5.3.2 Control of structure-borne tire/road noise based on simulation -- 7.6 Summary -- Nomenclatures -- References -- 8 Structure-borne vibration of tire -- 8.1 Introduction -- 8.2 Modal characteristics of tire vibration and influencing parameters -- 8.2.1 Modal characteristics of tire vibration -- 8.2.2 Influencing parameters of modal characteristics of tire vibration -- 8.2.2.1 Influence of tire pressure -- 8.2.2.2 Influence of tread pattern -- 8.2.2.3 Influence of tire mass -- 8.2.2.4 Influences of belt angle and Young's moduli of belt cord and tread compound -- 8.3 Modal test methods of a tire -- 8.4 Analytical calculation method of tire mode -- 8.4.1 Two-dimensional ring model of a tire -- 8.4.1.1 Strain of ring -- 8.4.1.2 Initial stress -- 8.4.1.3 Velocity of point at middle surface of ring -- 8.4.1.4 Work of inflation pressure -- 8.4.2 Three-dimensional ring model of tire -- 8.4.2.1 Stress and strain of tire crown -- 8.4.2.2 Equations of motion of three-dimensional ring model -- 8.4.2.3 In-plane free vibration mode of a tire -- 8.4.2.4 Out-of-plane free vibration mode of a tire -- 8.5 Modal analysis of a tire based on finite element method -- 8.5.1 Differential equations of a dynamic system -- 8.5.2 Methods of solving natural frequency and modal shape -- 8.5.3 Establishment of finite element model of a tire -- 8.5.4 Natural frequency and modal shape of a tire -- 8.6 Summary -- Nomenclature -- References -- 9 Structural-acoustic analysis of tire cavity system | ||
500 | |a 9.1 Introduction -- 9.2 Frequency and wave number -- 9.3 Tire cavity resonance -- 9.4 Tire-cavity-wheel system -- 9.5 Tire cavity resonance frequency -- 9.5.1 Degenerate tire cavity modes -- 9.6 Tire tread natural frequency and mode shape -- 9.7 Structural-acoustic coupling of tire tread and cavity -- 9.7.1 Impedance-mobility approach -- 9.8 Finite element simulation of tire structural resonance -- 9.9 Finite element simulation of structural-acoustic coupling of tire cavity -- 9.10 Experiment using model from FEM -- 9.11 Effect of loaded tire -- 9.12 Road experiment using internal microphone -- 9.13 Summary -- Nomenclature -- References -- 10 Computer-aided engineering findings on the physics of tire/road noise -- 10.1 Introduction -- 10.2 Computer-aided engineering simulation methodologies -- 10.2.1 Deterministic methods at low frequency -- 10.2.1.1 Finite element method -- 10.2.1.2 Boundary element method -- 10.2.1.3 Waveguide finite element method -- 10.2.2 Energy methods at high frequency -- 10.2.2.1 Statistical energy analysis -- 10.2.2.2 Energy finite element analysis -- 10.2.3 Hybrid methods in the mid frequency range -- 10.3 Other computer-aided engineering simulation methodologies -- 10.3.1 Computational fluid dynamics -- 10.3.2 Transfer path analysis -- 10.4 Vehicle suspension corner module simulation -- 10.5 Mechanisms of the wheel imbalance induced vibration -- 10.6 Tire-road interaction caused by dynamic force variation induced by a hexagon tire -- 10.7 Tire-road interface impact force and friction force-induced vibration -- 10.8 Finite element modeling of tire-pavement interaction -- 10.9 Auralization models of tire/road noise -- 10.10 Trends and challenges in computer-aided engineering modeling of tire/road noise -- 10.11 Summary -- Nomenclature -- References -- 11 Tire cavity noise mitigation using acoustic absorbent materials | ||
500 | |a 11.1 Introduction -- 11.2 Sound absorption coefficient theory -- 11.2.1 Airflow resistivity -- 11.2.2 Empirical models -- 11.2.3 Effect of airflow resistivity -- 11.2.4 Effect of layer thickness -- 11.3 Absorption coefficient measurement methodologies -- 11.3.1 Impedance tube method -- 11.3.2 Alpha cabin -- 11.4 Tire cavity damping loss -- 11.5 Sound absorption with perforated plates, porous materials, and air gaps -- 11.6 Application to tire cavity -- 11.7 Multilayer configuration design -- 11.8 Analytical simulation of the multilayer sound absorber -- 11.9 Using finite element simulation -- 11.10 Experiments on tires -- 11.11 Experimental modal test (impact hammer test) -- 11.12 Experimental modal analysis test with a shaker excitation -- 11.13 Design of experiment (Taguchi) -- 11.14 Summary -- Nomenclature -- References -- 12 Statistical energy analysis of tire/road noise -- 12.1 Introduction -- 12.2 Basic principle of statistical energy analysis -- 12.2.1 Power balance equation of statistical energy analysis -- 12.2.2 Energy description of subsystem -- 12.2.3 Damping loss factor and coupling loss factor -- 12.3 Simulation of tire high-frequency vibration and tire cavity resonance noise -- 12.3.1 Statistical energy analysis model and simulation of tire structure -- 12.3.1.1 Subsystem partition and statistical energy analysis model of a tire -- 12.3.1.2 Parameters in statistical energy analysis model of a tire -- 12.3.1.3 Simulation results and analysis -- 12.3.2 Statistical energy analysis model and simulation of tire cavity system -- 12.3.2.1 Statistical energy analysis model of tire with cavity -- 12.3.2.2 Parameters of statistical energy analysis model and external excitation -- 12.3.2.3 Simulation of tire cavity system using statistical energy analysis -- 12.4 Tire/road noise modeling and simulation using statistical energy analysis | ||
500 | |a 12.4.1 Generation and propagation of tire/road noise | ||
700 | 1 | |a Wang, Xu |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-12-818409-7 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032424840 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272949 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2509227 |
---|---|
_version_ | 1821936103738834944 |
any_adam_object | |
author2 | Wang, Xu |
author2_role | edt |
author2_variant | x w xw |
author_facet | Wang, Xu |
building | Verbundindex |
bvnumber | BV047017305 |
classification_tum | VER 028 |
collection | ZDB-30-PQE |
ctrlnum | (ZDB-30-PQE)EBC6272949 (OCoLC)1224012312 (DE-599)BVBBV047017305 |
dewey-full | 629.2482 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.2482 |
dewey-search | 629.2482 |
dewey-sort | 3629.2482 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10640nam a2200397zc 4500</leader><controlfield tag="001">BV047017305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230928 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201119s2020 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128184103</subfield><subfield code="9">978-0-12-818410-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6272949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1224012312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047017305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.2482</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 028</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automotive tire noise and vibrations</subfield><subfield code="b">analysis, measurement and simulation</subfield><subfield code="c">edited by Xu Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States</subfield><subfield code="b">Butterworth-Heinemann</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Front Cover -- Automotive Tire Noise and Vibrations -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Background introduction -- References -- 2 Tire/road noise separation: tread pattern noise and road texture noise -- 2.1 Introduction -- 2.2 Close proximity measurement -- 2.3 Tire/road noise separation -- 2.3.1 Two noise components -- 2.3.2 Order tracking analysis -- 2.3.3 Noise separation results -- 2.4 Tire/road wheel noise separation and combination -- 2.5 Conclusion -- Acknowledgments -- References -- 3 Influence of tread pattern on tire/road noise -- 3.1 Introduction -- 3.2 Tire/road noise separation -- 3.3 Tread pattern parameterization -- 3.3.1 Tread profile spectrum -- 3.3.2 Air volume velocity spectrum -- 3.4 Correlation between tread pattern and tire noise -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Influence of road texture on tire/road noise -- 4.1 Introduction -- 4.2 Rough and smooth pavement -- 4.2.1 Total noise -- 4.2.2 Tread pattern noise -- 4.2.3 Nontread pattern noise -- 4.2.4 Percent contribution from the two noise components -- 4.3 Pavement texture characterization -- 4.4 Spectral trend between pavement texture and tire/road noise -- 4.5 Transfer function and regression model -- 4.6 Conclusion -- Acknowledgments -- References -- 5 Measurement methods of tire/road noise -- 5.1 Introduction -- 5.2 Tire noise and vibrations: indoor testing -- 5.2.1 Indoor testing: structural borne noise characterization -- 5.2.1.1 Indoor structural borne noise characterization: stationary tire -- 5.2.1.2 Indoor structural borne noise characterization: rolling tire impact test -- 5.2.1.3 Indoor structural borne noise characterization: high frequency structural borne noise characterization -- 5.2.2 Indoor airborne noise characterization -- 5.3 Outdoor testing -- 5.3.1 Outdoor testing: subjective evaluation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.3.2 Outdoor testing: objective evaluation -- 5.3.2.1 Outdoor objective evaluation: structural borne noise -- 5.3.2.2 Outdoor objective evaluation: airborne noise -- 5.3.2.3 Outdoor objective evaluation: pass-by noise measurement -- 5.4 Summary -- References -- Further reading -- 6 Generation mechanisms of tire/road noise -- 6.1 Introduction -- 6.2 Tire structural borne noise and airborne noise -- 6.2.1 Tire structural borne noise -- 6.2.2 Tire airborne noise -- 6.3 Tire noise and vibration: generation mechanisms -- 6.3.1 Impact induced noise and vibration -- 6.3.2 Air pumping -- 6.3.3 Friction-induced noise and vibration -- 6.3.4 Tire nonuniformity as a vibration source -- 6.4 Tire structural borne noise transmission mechanism -- 6.4.1 Low frequency transmissibility (below 30Hz) -- 6.4.2 Mid-frequency transmissibility from 30 to 500Hz -- 6.4.3 Effect of rolling on tire transmissibility -- 6.5 Tire noise and vibration amplification by acoustic resonance -- 6.5.1 Tire cavity resonance -- 6.5.2 Tire pipe resonance -- 6.5.3 Tire horn effect -- 6.6 Summary -- References -- Further reading -- 7 Suspension vibration and transfer path analysis -- 7.1 Introduction -- 7.2 Excitations of suspension system from road and tire -- 7.2.1 Excitation from road roughness -- 7.2.2 Excitation generated by tire -- 7.3 Theoretical basis of transfer path analysis method -- 7.3.1 Traditional transfer path analysis method -- 7.3.1.1 Frequency response function -- 7.3.1.2 Identification of structural load -- 7.3.1.3 Analysis of transfer path -- 7.3.2 Operational transfer path analysis -- 7.4 Transfer path analysis of suspension vibration -- 7.4.1 Frequency response function of suspension and car body system -- 7.4.2 Identification of load between suspension and car body -- 7.4.3 Transfer path analysis of suspension vibration</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7.5 Transfer path analysis of structure-borne tire/road noise -- 7.5.1 Transfer function of structure-borne noise -- 7.5.2 Identification of load on path point and principal component analysis -- 7.5.3 Analysis of interior noise from tire/road interaction based on transfer path analysis -- 7.5.3.1 Transfer path analysis of structure-borne tire/road noise based on test -- 7.5.3.2 Control of structure-borne tire/road noise based on simulation -- 7.6 Summary -- Nomenclatures -- References -- 8 Structure-borne vibration of tire -- 8.1 Introduction -- 8.2 Modal characteristics of tire vibration and influencing parameters -- 8.2.1 Modal characteristics of tire vibration -- 8.2.2 Influencing parameters of modal characteristics of tire vibration -- 8.2.2.1 Influence of tire pressure -- 8.2.2.2 Influence of tread pattern -- 8.2.2.3 Influence of tire mass -- 8.2.2.4 Influences of belt angle and Young's moduli of belt cord and tread compound -- 8.3 Modal test methods of a tire -- 8.4 Analytical calculation method of tire mode -- 8.4.1 Two-dimensional ring model of a tire -- 8.4.1.1 Strain of ring -- 8.4.1.2 Initial stress -- 8.4.1.3 Velocity of point at middle surface of ring -- 8.4.1.4 Work of inflation pressure -- 8.4.2 Three-dimensional ring model of tire -- 8.4.2.1 Stress and strain of tire crown -- 8.4.2.2 Equations of motion of three-dimensional ring model -- 8.4.2.3 In-plane free vibration mode of a tire -- 8.4.2.4 Out-of-plane free vibration mode of a tire -- 8.5 Modal analysis of a tire based on finite element method -- 8.5.1 Differential equations of a dynamic system -- 8.5.2 Methods of solving natural frequency and modal shape -- 8.5.3 Establishment of finite element model of a tire -- 8.5.4 Natural frequency and modal shape of a tire -- 8.6 Summary -- Nomenclature -- References -- 9 Structural-acoustic analysis of tire cavity system</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9.1 Introduction -- 9.2 Frequency and wave number -- 9.3 Tire cavity resonance -- 9.4 Tire-cavity-wheel system -- 9.5 Tire cavity resonance frequency -- 9.5.1 Degenerate tire cavity modes -- 9.6 Tire tread natural frequency and mode shape -- 9.7 Structural-acoustic coupling of tire tread and cavity -- 9.7.1 Impedance-mobility approach -- 9.8 Finite element simulation of tire structural resonance -- 9.9 Finite element simulation of structural-acoustic coupling of tire cavity -- 9.10 Experiment using model from FEM -- 9.11 Effect of loaded tire -- 9.12 Road experiment using internal microphone -- 9.13 Summary -- Nomenclature -- References -- 10 Computer-aided engineering findings on the physics of tire/road noise -- 10.1 Introduction -- 10.2 Computer-aided engineering simulation methodologies -- 10.2.1 Deterministic methods at low frequency -- 10.2.1.1 Finite element method -- 10.2.1.2 Boundary element method -- 10.2.1.3 Waveguide finite element method -- 10.2.2 Energy methods at high frequency -- 10.2.2.1 Statistical energy analysis -- 10.2.2.2 Energy finite element analysis -- 10.2.3 Hybrid methods in the mid frequency range -- 10.3 Other computer-aided engineering simulation methodologies -- 10.3.1 Computational fluid dynamics -- 10.3.2 Transfer path analysis -- 10.4 Vehicle suspension corner module simulation -- 10.5 Mechanisms of the wheel imbalance induced vibration -- 10.6 Tire-road interaction caused by dynamic force variation induced by a hexagon tire -- 10.7 Tire-road interface impact force and friction force-induced vibration -- 10.8 Finite element modeling of tire-pavement interaction -- 10.9 Auralization models of tire/road noise -- 10.10 Trends and challenges in computer-aided engineering modeling of tire/road noise -- 10.11 Summary -- Nomenclature -- References -- 11 Tire cavity noise mitigation using acoustic absorbent materials</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11.1 Introduction -- 11.2 Sound absorption coefficient theory -- 11.2.1 Airflow resistivity -- 11.2.2 Empirical models -- 11.2.3 Effect of airflow resistivity -- 11.2.4 Effect of layer thickness -- 11.3 Absorption coefficient measurement methodologies -- 11.3.1 Impedance tube method -- 11.3.2 Alpha cabin -- 11.4 Tire cavity damping loss -- 11.5 Sound absorption with perforated plates, porous materials, and air gaps -- 11.6 Application to tire cavity -- 11.7 Multilayer configuration design -- 11.8 Analytical simulation of the multilayer sound absorber -- 11.9 Using finite element simulation -- 11.10 Experiments on tires -- 11.11 Experimental modal test (impact hammer test) -- 11.12 Experimental modal analysis test with a shaker excitation -- 11.13 Design of experiment (Taguchi) -- 11.14 Summary -- Nomenclature -- References -- 12 Statistical energy analysis of tire/road noise -- 12.1 Introduction -- 12.2 Basic principle of statistical energy analysis -- 12.2.1 Power balance equation of statistical energy analysis -- 12.2.2 Energy description of subsystem -- 12.2.3 Damping loss factor and coupling loss factor -- 12.3 Simulation of tire high-frequency vibration and tire cavity resonance noise -- 12.3.1 Statistical energy analysis model and simulation of tire structure -- 12.3.1.1 Subsystem partition and statistical energy analysis model of a tire -- 12.3.1.2 Parameters in statistical energy analysis model of a tire -- 12.3.1.3 Simulation results and analysis -- 12.3.2 Statistical energy analysis model and simulation of tire cavity system -- 12.3.2.1 Statistical energy analysis model of tire with cavity -- 12.3.2.2 Parameters of statistical energy analysis model and external excitation -- 12.3.2.3 Simulation of tire cavity system using statistical energy analysis -- 12.4 Tire/road noise modeling and simulation using statistical energy analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">12.4.1 Generation and propagation of tire/road noise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xu</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-818409-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032424840</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6272949</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047017305 |
illustrated | Illustrated |
indexdate | 2024-12-20T19:07:25Z |
institution | BVB |
isbn | 9780128184103 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032424840 |
oclc_num | 1224012312 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Butterworth-Heinemann |
record_format | marc |
spellingShingle | Automotive tire noise and vibrations analysis, measurement and simulation |
title | Automotive tire noise and vibrations analysis, measurement and simulation |
title_auth | Automotive tire noise and vibrations analysis, measurement and simulation |
title_exact_search | Automotive tire noise and vibrations analysis, measurement and simulation |
title_full | Automotive tire noise and vibrations analysis, measurement and simulation edited by Xu Wang |
title_fullStr | Automotive tire noise and vibrations analysis, measurement and simulation edited by Xu Wang |
title_full_unstemmed | Automotive tire noise and vibrations analysis, measurement and simulation edited by Xu Wang |
title_short | Automotive tire noise and vibrations |
title_sort | automotive tire noise and vibrations analysis measurement and simulation |
title_sub | analysis, measurement and simulation |
work_keys_str_mv | AT wangxu automotivetirenoiseandvibrationsanalysismeasurementandsimulation |