Applied nature-inspired computing: algorithms and case studies:
This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimi...
Gespeichert in:
Weitere beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Singapore, Singapore
Springer
[2020]
|
Schriftenreihe: | Springer tracts in nature-inspired computing
|
Schlagwörter: | |
Zusammenfassung: | This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each.Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management |
Beschreibung: | Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation.- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification.- Chapter 3. Recommending Healthy Personalized Daily Menus – A Cuckoo Search based Hyper-Heuristic Approach.- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network.- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem.- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization.- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction.- Chapter 8. Examination of Retinal Anatomical Structures – A Study with Spider Monkey Optimization Algorithm.- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study.- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing.- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends. |
Umfang: | xii, 275 Seiten Illustrationen, Diagramme 444 grams |
ISBN: | 9789811392658 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046916464 | ||
003 | DE-604 | ||
005 | 20201026 | ||
007 | t| | ||
008 | 200928s2020 xx a||| |||| 00||| eng d | ||
020 | |a 9789811392658 |9 978-981-13-9265-8 | ||
024 | 3 | |a 9789811392658 | |
035 | |a (OCoLC)1220879337 | ||
035 | |a (DE-599)BVBBV046916464 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
245 | 1 | 0 | |a Applied nature-inspired computing: algorithms and case studies |c Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors |
264 | 1 | |a Singapore, Singapore |b Springer |c [2020] | |
300 | |a xii, 275 Seiten |b Illustrationen, Diagramme |c 444 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer tracts in nature-inspired computing | |
500 | |a Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation.- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification.- Chapter 3. Recommending Healthy Personalized Daily Menus – A Cuckoo Search based Hyper-Heuristic Approach.- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network.- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem.- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization.- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction.- Chapter 8. Examination of Retinal Anatomical Structures – A Study with Spider Monkey Optimization Algorithm.- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study.- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing.- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends. | ||
520 | |a This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each.Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Computational intelligence | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Engineering | |
653 | |a Hardcover, Softcover / Technik/Allgemeines, Lexika | ||
700 | 1 | |a Dey, Nilanjan |d 1984- |0 (DE-588)1104273500 |4 edt | |
700 | 1 | |a Ashour, Amira |d 1975- |0 (DE-588)1127237292 |4 edt | |
700 | 1 | |a Bhattacharyya, Siddhartha |d 1975- |e Sonstige |0 (DE-588)1079224548 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-13-9263-4 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032325774 |
Datensatz im Suchindex
_version_ | 1820964291115745280 |
---|---|
adam_text | |
any_adam_object | |
author2 | Dey, Nilanjan 1984- Ashour, Amira 1975- |
author2_role | edt edt |
author2_variant | n d nd a a aa |
author_GND | (DE-588)1104273500 (DE-588)1127237292 (DE-588)1079224548 |
author_facet | Dey, Nilanjan 1984- Ashour, Amira 1975- |
building | Verbundindex |
bvnumber | BV046916464 |
ctrlnum | (OCoLC)1220879337 (DE-599)BVBBV046916464 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV046916464</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201026</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">200928s2020 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811392658</subfield><subfield code="9">978-981-13-9265-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811392658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1220879337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046916464</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied nature-inspired computing: algorithms and case studies</subfield><subfield code="c">Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore, Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 275 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">444 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer tracts in nature-inspired computing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation.- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification.- Chapter 3. Recommending Healthy Personalized Daily Menus – A Cuckoo Search based Hyper-Heuristic Approach.- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network.- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem.- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization.- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction.- Chapter 8. Examination of Retinal Anatomical Structures – A Study with Spider Monkey Optimization Algorithm.- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study.- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing.- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each.Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Technik/Allgemeines, Lexika</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dey, Nilanjan</subfield><subfield code="d">1984-</subfield><subfield code="0">(DE-588)1104273500</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashour, Amira</subfield><subfield code="d">1975-</subfield><subfield code="0">(DE-588)1127237292</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhattacharyya, Siddhartha</subfield><subfield code="d">1975-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1079224548</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-13-9263-4</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032325774</subfield></datafield></record></collection> |
id | DE-604.BV046916464 |
illustrated | Illustrated |
indexdate | 2025-01-11T14:47:55Z |
institution | BVB |
isbn | 9789811392658 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032325774 |
oclc_num | 1220879337 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xii, 275 Seiten Illustrationen, Diagramme 444 grams |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | Springer tracts in nature-inspired computing |
spelling | Applied nature-inspired computing: algorithms and case studies Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors Singapore, Singapore Springer [2020] xii, 275 Seiten Illustrationen, Diagramme 444 grams txt rdacontent n rdamedia nc rdacarrier Springer tracts in nature-inspired computing Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation.- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification.- Chapter 3. Recommending Healthy Personalized Daily Menus – A Cuckoo Search based Hyper-Heuristic Approach.- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network.- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem.- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization.- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction.- Chapter 8. Examination of Retinal Anatomical Structures – A Study with Spider Monkey Optimization Algorithm.- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study.- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing.- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends. This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each.Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management bicssc bisacsh Computational intelligence Algorithms Computer science—Mathematics Computer simulation Engineering Hardcover, Softcover / Technik/Allgemeines, Lexika Dey, Nilanjan 1984- (DE-588)1104273500 edt Ashour, Amira 1975- (DE-588)1127237292 edt Bhattacharyya, Siddhartha 1975- Sonstige (DE-588)1079224548 oth Erscheint auch als Online-Ausgabe 978-981-13-9263-4 |
spellingShingle | Applied nature-inspired computing: algorithms and case studies bicssc bisacsh Computational intelligence Algorithms Computer science—Mathematics Computer simulation Engineering |
title | Applied nature-inspired computing: algorithms and case studies |
title_auth | Applied nature-inspired computing: algorithms and case studies |
title_exact_search | Applied nature-inspired computing: algorithms and case studies |
title_full | Applied nature-inspired computing: algorithms and case studies Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors |
title_fullStr | Applied nature-inspired computing: algorithms and case studies Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors |
title_full_unstemmed | Applied nature-inspired computing: algorithms and case studies Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, editors |
title_short | Applied nature-inspired computing: algorithms and case studies |
title_sort | applied nature inspired computing algorithms and case studies |
topic | bicssc bisacsh Computational intelligence Algorithms Computer science—Mathematics Computer simulation Engineering |
topic_facet | bicssc bisacsh Computational intelligence Algorithms Computer science—Mathematics Computer simulation Engineering |
work_keys_str_mv | AT deynilanjan appliednatureinspiredcomputingalgorithmsandcasestudies AT ashouramira appliednatureinspiredcomputingalgorithmsandcasestudies AT bhattacharyyasiddhartha appliednatureinspiredcomputingalgorithmsandcasestudies |