Data feminism:
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, Massachusetts ; London
The MIT Press
[2020]
|
Schriftenreihe: | <Strong> ideas series
|
Schlagwörter: | |
Links: | https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233 https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6120950 https://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=6120950 https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233 |
Abstract: | "We have seen through many examples that data science and artificial intelligence can reinforce structural inequalities like sexism and racism. Data is power, and that power is distributed unequally. This book offers a vision for a feminist data science that can challenge power and work towards justice. This book takes a stand against a world that benefits some (including the authors, two white women) at the expense of others. It seeks to provide concrete steps for data scientists seeking to learn how feminism can help them work towards justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is addressed to professionals in all fields where data-driven decisions are being made, as well as to communities that want to better understand the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to better communicate the significance of such charts and statistics to others. This is an example-driven book written with a broad audience of scholars, students, and practitioners in mind. It offers a way of thinking about data, both their uses and their limits, that is informed by direct experience, by a commitment to action, and by the ideas associated with intersectional feminist thought"-- |
Umfang: | 1 Online-Ressource (314 Seiten) |
ISBN: | 9780262358521 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046672170 | ||
003 | DE-604 | ||
005 | 20221206 | ||
007 | cr|uuu---uuuuu | ||
008 | 200415s2020 xx ob||| 00||| eng d | ||
020 | |a 9780262358521 |9 978-0-262-35852-1 | ||
035 | |a (ZDB-30-PQE)EBC6120950 | ||
035 | |a (OCoLC)1152223225 | ||
035 | |a (DE-599)BVBBV046672170 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-473 |a DE-83 |a DE-91 |a DE-573 | ||
084 | |a MS 3020 |0 (DE-625)123654: |2 rvk | ||
084 | |a BL 5380 |0 (DE-625)12177: |2 rvk | ||
084 | |a BK 8100 |0 (DE-625)11964: |2 rvk | ||
084 | |a MS 3150 |0 (DE-625)123671: |2 rvk | ||
084 | |a DAT 040 |2 stub | ||
084 | |a SOZ 450 |2 stub | ||
100 | 1 | |a D'Ignazio, Catherine |e Verfasser |0 (DE-588)1208794604 |4 aut | |
245 | 1 | 0 | |a Data feminism |c Catherine D'Ignazio and Lauren F. Klein |
264 | 1 | |a Cambridge, Massachusetts ; London |b The MIT Press |c [2020] | |
264 | 4 | |c © 2020 | |
300 | |a 1 Online-Ressource (314 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a <Strong> ideas series | |
505 | 8 | |a Introduction: Why data science needs feminism -- Examine power : the power chapter -- Challenge power : collect, analyze, imagine, teach -- Elevate emotion and embodiment : on rational, scientific, objective viewpoints from mythical, imaginary, impossible standpoints -- Rethink binaries and hierarchies : "What gets counted counts" -- Embrace pluralism : unicorns, janitors, ninjas, wizards and rock stars -- Consider context : the numbers don't speak for themselves -- Make labor visible : show your work -- Conclusion: Now let's multiply | |
520 | 3 | |a "We have seen through many examples that data science and artificial intelligence can reinforce structural inequalities like sexism and racism. Data is power, and that power is distributed unequally. This book offers a vision for a feminist data science that can challenge power and work towards justice. This book takes a stand against a world that benefits some (including the authors, two white women) at the expense of others. It seeks to provide concrete steps for data scientists seeking to learn how feminism can help them work towards justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is addressed to professionals in all fields where data-driven decisions are being made, as well as to communities that want to better understand the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to better communicate the significance of such charts and statistics to others. This is an example-driven book written with a broad audience of scholars, students, and practitioners in mind. It offers a way of thinking about data, both their uses and their limits, that is informed by direct experience, by a commitment to action, and by the ideas associated with intersectional feminist thought"-- | |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feminismus |0 (DE-588)4222126-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Feminism | |
653 | 0 | |a Feminism and science | |
653 | 0 | |a Big data / Social aspects | |
653 | 0 | |a Quantitative research / Methodology / Social aspects | |
653 | 0 | |a Power (Social sciences) | |
653 | 0 | |a Big data / Social aspects | |
653 | 0 | |a Feminism | |
653 | 0 | |a Feminism and science | |
653 | 0 | |a Power (Social sciences) | |
689 | 0 | 0 | |a Feminismus |0 (DE-588)4222126-2 |D s |
689 | 0 | 1 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Klein, Lauren F. |e Verfasser |0 (DE-588)1203383754 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-262-04400-4 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-37-IEM | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-032083152 | |
966 | e | |u https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233 |l DE-573 |p ZDB-37-IEM |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6120950 |l DE-91 |p ZDB-30-PQE |q TUM_Einzelkauf |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=6120950 |l DE-473 |p ZDB-30-PQE |q UBG_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2484865 |
---|---|
_version_ | 1821936058501169153 |
any_adam_object | |
author | D'Ignazio, Catherine Klein, Lauren F. |
author_GND | (DE-588)1208794604 (DE-588)1203383754 |
author_facet | D'Ignazio, Catherine Klein, Lauren F. |
author_role | aut aut |
author_sort | D'Ignazio, Catherine |
author_variant | c d cd l f k lf lfk |
building | Verbundindex |
bvnumber | BV046672170 |
classification_rvk | MS 3020 BL 5380 BK 8100 MS 3150 |
classification_tum | DAT 040 SOZ 450 |
collection | ZDB-30-PQE ZDB-37-IEM |
contents | Introduction: Why data science needs feminism -- Examine power : the power chapter -- Challenge power : collect, analyze, imagine, teach -- Elevate emotion and embodiment : on rational, scientific, objective viewpoints from mythical, imaginary, impossible standpoints -- Rethink binaries and hierarchies : "What gets counted counts" -- Embrace pluralism : unicorns, janitors, ninjas, wizards and rock stars -- Consider context : the numbers don't speak for themselves -- Make labor visible : show your work -- Conclusion: Now let's multiply |
ctrlnum | (ZDB-30-PQE)EBC6120950 (OCoLC)1152223225 (DE-599)BVBBV046672170 |
discipline | Informatik Soziologie Theologie / Religionswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04470nam a2200649 c 4500</leader><controlfield tag="001">BV046672170</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221206 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200415s2020 xx ob||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262358521</subfield><subfield code="9">978-0-262-35852-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6120950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1152223225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046672170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MS 3020</subfield><subfield code="0">(DE-625)123654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BL 5380</subfield><subfield code="0">(DE-625)12177:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BK 8100</subfield><subfield code="0">(DE-625)11964:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MS 3150</subfield><subfield code="0">(DE-625)123671:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 040</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SOZ 450</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">D'Ignazio, Catherine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1208794604</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data feminism</subfield><subfield code="c">Catherine D'Ignazio and Lauren F. Klein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts ; London</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (314 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a"><Strong> ideas series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction: Why data science needs feminism -- Examine power : the power chapter -- Challenge power : collect, analyze, imagine, teach -- Elevate emotion and embodiment : on rational, scientific, objective viewpoints from mythical, imaginary, impossible standpoints -- Rethink binaries and hierarchies : "What gets counted counts" -- Embrace pluralism : unicorns, janitors, ninjas, wizards and rock stars -- Consider context : the numbers don't speak for themselves -- Make labor visible : show your work -- Conclusion: Now let's multiply</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"We have seen through many examples that data science and artificial intelligence can reinforce structural inequalities like sexism and racism. Data is power, and that power is distributed unequally. This book offers a vision for a feminist data science that can challenge power and work towards justice. This book takes a stand against a world that benefits some (including the authors, two white women) at the expense of others. It seeks to provide concrete steps for data scientists seeking to learn how feminism can help them work towards justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is addressed to professionals in all fields where data-driven decisions are being made, as well as to communities that want to better understand the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to better communicate the significance of such charts and statistics to others. This is an example-driven book written with a broad audience of scholars, students, and practitioners in mind. It offers a way of thinking about data, both their uses and their limits, that is informed by direct experience, by a commitment to action, and by the ideas associated with intersectional feminist thought"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feminismus</subfield><subfield code="0">(DE-588)4222126-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Feminism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Feminism and science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data / Social aspects</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research / Methodology / Social aspects</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power (Social sciences)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data / Social aspects</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Feminism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Feminism and science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power (Social sciences)</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feminismus</subfield><subfield code="0">(DE-588)4222126-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Lauren F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1203383754</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-262-04400-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-IEM</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032083152</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-37-IEM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6120950</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-bamberg/detail.action?docID=6120950</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBG_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046672170 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:57:56Z |
institution | BVB |
isbn | 9780262358521 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032083152 |
oclc_num | 1152223225 |
open_access_boolean | |
owner | DE-11 DE-473 DE-BY-UBG DE-83 DE-91 DE-BY-TUM DE-573 |
owner_facet | DE-11 DE-473 DE-BY-UBG DE-83 DE-91 DE-BY-TUM DE-573 |
physical | 1 Online-Ressource (314 Seiten) |
psigel | ZDB-30-PQE ZDB-37-IEM ZDB-30-PQE TUM_Einzelkauf ZDB-30-PQE UBG_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The MIT Press |
record_format | marc |
series2 | <Strong> ideas series |
spellingShingle | D'Ignazio, Catherine Klein, Lauren F. Data feminism Introduction: Why data science needs feminism -- Examine power : the power chapter -- Challenge power : collect, analyze, imagine, teach -- Elevate emotion and embodiment : on rational, scientific, objective viewpoints from mythical, imaginary, impossible standpoints -- Rethink binaries and hierarchies : "What gets counted counts" -- Embrace pluralism : unicorns, janitors, ninjas, wizards and rock stars -- Consider context : the numbers don't speak for themselves -- Make labor visible : show your work -- Conclusion: Now let's multiply Data Science (DE-588)1140936166 gnd Feminismus (DE-588)4222126-2 gnd |
subject_GND | (DE-588)1140936166 (DE-588)4222126-2 |
title | Data feminism |
title_auth | Data feminism |
title_exact_search | Data feminism |
title_full | Data feminism Catherine D'Ignazio and Lauren F. Klein |
title_fullStr | Data feminism Catherine D'Ignazio and Lauren F. Klein |
title_full_unstemmed | Data feminism Catherine D'Ignazio and Lauren F. Klein |
title_short | Data feminism |
title_sort | data feminism |
topic | Data Science (DE-588)1140936166 gnd Feminismus (DE-588)4222126-2 gnd |
topic_facet | Data Science Feminismus |
url | https://ieeexplore.ieee.org/servlet/opac?bknumber=9072233 |
work_keys_str_mv | AT dignaziocatherine datafeminism AT kleinlaurenf datafeminism |