Applied multivariate statistical analysis:
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Upper Saddle River, New Jersey
Pearson
[2019]
|
Ausgabe: | Sixth edition [Pearson modern classic edition] |
Schriftenreihe: | Pearson modern classic
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031248734&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Beschreibung: | Includes bibliographical references and indexes |
Umfang: | xviii, 773 Seiten Illustrationen, Diagramme 26 cm |
ISBN: | 9780134995397 0134995392 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV045865333 | ||
003 | DE-604 | ||
005 | 20190528 | ||
007 | t| | ||
008 | 190508s2019 xxua||| |||| 00||| eng d | ||
010 | |a 017059694 | ||
020 | |a 9780134995397 |9 978-0-13-499539-7 | ||
020 | |a 0134995392 |9 0-13-499539-2 | ||
035 | |a (OCoLC)1048392278 | ||
035 | |a (DE-599)BVBBV045865333 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 | ||
050 | 0 | |a QA278 | |
082 | 0 | |a 519.5/35 |2 23 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Johnson, Richard Arnold |d 1937- |0 (DE-588)130043648 |4 aut | |
245 | 1 | 0 | |a Applied multivariate statistical analysis |c Richard A. Johnson (University of Wisconsin-Madison), Dean W. Wichern (Texas A&M University) |
250 | |a Sixth edition [Pearson modern classic edition] | ||
264 | 1 | |a Upper Saddle River, New Jersey |b Pearson |c [2019] | |
300 | |a xviii, 773 Seiten |b Illustrationen, Diagramme |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Pearson modern classic | |
500 | |a Includes bibliographical references and indexes | ||
650 | 4 | |a Multivariate analysis | |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wichern, Dean W. |d 1942- |0 (DE-588)135548624 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031248734&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-031248734 |
Datensatz im Suchindex
_version_ | 1819291364570955776 |
---|---|
adam_text | Contents PREFACE 1 XV ASPECTS OF MULTIVARIATE ANALYSIS 1.1 1.2 1.3 1 Introduction 1 Applications of Multivariate Techniques 3 The Organization of Data 5 Arrays, 5 Descriptive Statistics, 6 Graphical Techniques, 11 1.4 Data Displays and Pictorial Representations 19 Linking Multiple Two-Dimensional Scatter Plots, 20 Graphs of Growth Curves, 24 Stars, 26 Chernoff Faces, 27 1.5 1.6 2 Distance 30 Final Comments 37 Exercises 37 References 47 MATRIX ALGEBRA AND RANDOM VECTORS 2.1 2.2 49 Introduction 49 Some Basics of Matrix and Vector Algebra 49 Vectors, 49 Matrices, 54 2.3 2.4 2.5 2.6 Positive Definite Matrices 60 A Square-Root Matrix 65 Random Vectors and Matrices 66 Mean Vectors and Covariance Matrices 68 Partitioning the Covariance Matrix, 73 The Mean Vector and Covariance Matrix for Linear Combinations of Random Variables, 75 Partitioning the Sample Mean Vector and Covariance Matrix, 77 2.7 Matrix Inequalities and Maximization 78 vii
viii Contents Supplement 2A: Vectors and Matrices: Basic Concepts 82 Vectors, 82 Matrices, 87 Exercises 103 References 110 3 SAMPLE GEOMETRY AND RANDOM SAMPLING 3.1 3.2 3.3 3.4 111 Introduction 111 The Geometry of the Sample 111 Random Samples and the Expected Values of the Sample Mean and Covariance Matrix 119 Generalized Variance 123 Situations in which the Generalized Sample Variance Is Zero, 129 Generalized Variance Determined by | R and Its Geometrical Interpretation, 134 Another Generalization of Variance, 137 3.5 3.6 4 Sample Mean, Covariance, and Correlation As Matrix Operations 137 Sample Values of Linear Combinations of Variables Exercises 144 References 148 140 THE MULTIVARIATE NORMAL DISTRIBUTION 4.1 4.2 Introduction 149 The Multivariate Normal Density and Its Properties 149 149 Additional Properties of the Multivariate Normal Distribution, 156 4.3 Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation 168 The Multivariate Normal Likelihood, 168 Maximum Likelihood Estimation of μ and 1,170 Sufficient Statistics, 173 4.4 The Sampling Distribution of X and S 173 Properties of the Wishart Distribution, 174 4.5 4.6 Large-Sample Behavior of X and S 175 Assessing the Assumption of Normality 177 Evaluating the Normality of the Univariate Marginal Distributions, 177 Evaluating Bivariate Normality, 182 4.7 Detecting Outliers and Cleaning Data 187 Steps for Detecting Outliers, 189 4.8 Transformations to Near Normality 192 Transforming Multivariate Observations, 195 Exercises 200 References 208
Contents 5 INFERENCES ABOUT A MEAN VECTOR 5.1 5.2 5.3 ¡X 210 Introduction 210 The Plausibility of μ0 as a Value for a Normal Population Mean 210 Hotelling’s T2 and Likelihood Ratio Tests 216 General Likelihood Ratio Method, 219 5.4 Confidence Regions and Simultaneous Comparisons of Component Means 220 Simultaneous Confidence Statements, 223 A Comparison of Simultaneous Confidence Intervals with One-at-a-Time Intervals, 229 The Bonferroni Method of Multiple Comparisons, 232 5.5 5.6 Large Sample Inferences about a Population Mean Vector 234 Multivariate Quality Control Charts 239 Charts for Monitoring a Sample of Individual Multivariate Observations for Stability, 241 Control Regions for Future Individual Observations, 247 Control Ellipse for Future Observations, 248 T2-Chart for Future Observations, 248 Control Charts Based on Subsample Means, 249 Control Regions for Future Subsample Observations, 251 5.7 5.8 6 Inferences about Mean Vectors when Some Observations Are Missing 251 Difficulties Due to lime Dependence in Multivariate Observations 256 Supplement 5A: Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids 258 Exercises 261 References 272 COMPARISONS OF SEVERAL MULTIVARIATE MEANS 6.1 6.2 273 Introduction 273 Paired Comparisons and a Repeated Measures Design 273 Paired Comparisons, 273 A Repeated Measures Design for Comparing Treatments, 279 6.3 Comparing Mean Vectors from Two Populations 284 Assumptions Concerning the Structure of the Data, 284 Further Assumptions When ոճ and n2Are Small, 285 Simultaneous Confidence Intervals, 288
The Ъѵо-Sample Situation When Si ¥= S2,291 An Approximation to the Distribution of T2 for Normal Populations When Sample Sizes Are Not Large, 294 6.4 Comparing Several Multivariate Population Means (One-Way Manova) 296 Assumptions about the Structure of the Data for One-Way MANOVA, 296
x Contents A Summary of Univariate ANOVA, 297 Multivariate Analysis of Variance (MANOVA), 301 6.5 6.6 6.7 Simultaneous Confidence Intervals for Treatment Effects 308 Testing for Equality of Covariance Matrices 310 Two-Way Multivariate Analysis of Variance 312 Univariate Two-Way Fixed-Effects Model with Interaction, 312 Multivariate Two-Way Fixed-Effects Model with Interaction, 315 6.8 6.9 6.10 7 Profile Analysis 323 Repeated Measures Designs and Growth Curves 328 Perspectives and a Strategy for Analyzing Multivariate Models 332 Exercises 337 References 358 MULTIVARIATE LINEAR REGRESSION MODELS 7.1 7.2 7.3 360 Introduction 360 The Classical Linear Regression Model 360 Least Squares Estimation 364 Sum-of-Squares Decomposition, 366 Geometry of Least Squares, 367 Sampling Properties of Classical Least Squares Estimators, 369 7.4 Inferences About the Regression Model 370 Inferences Concerning the Regression Parameters, 370 Likelihood Ratio Tests for the Regression Parameters, 374 7.5 Inferences from the Estimated Regression Function 378 Estimating the Regression Function at z0,378 Forecasting a New Observation at z0,379 7.6 Model Checking and Other Aspects of Regression 381 Does the Model Fit?, 381 Leverage and Influence, 384 Additional Problems in Linear Regression, 384 7.7 Multivariate Multiple Regression 387 Likelihood Ratio Tests for Regression Parameters, 395 Other Multivariate Test Statistics, 398 Predictions from Multivariate Multiple Regressions, 399 7.8 The Concept of Linear Regression 401 Prediction of Several Variables, 406 Partial Correlation Coefficient, 409 7.9
Comparing the Two Formulations of the Regression Model 410 Mean Corrected Form of the Regression Model, 410 Relating the Formulations, 412 7.10 Multiple Regression Models with Time Dependent Errors 413 Supplement 7A: The Distribution of the Likelihood Ratio for the Multivariate Multiple Regression Model 418 Exercises 420 References 428
Contents 8 PRINCIPAL COMPONENTS 8.1 8.2 xi 430 Introduction 430 Population Principal Components 430 Principal Components Obtained from Standardized Variables, 436 Principal Components for Covariance Matrices with Special Structures, 439 8.3 Summarizing Sample Variation by Principal Components 441 The Number of Principal Components, 444 Interpretation of the Sample Principal Components, 448 Standardizing the Sample Principal Components, 449 8.4 8.5 Graphing the Principal Components 454 Large Sample Inferences л 456 Large Sample Properties of A; and ê/, 456 Testing for the Equal Correlation Structure, 457 8.6 Monitoring Quality with Principal Components 459 Checking a Given Set of Measurements for Stability, 459 Controlling Future Values, 463 Supplement 8A: The Geometry of the Sample Principal Component Approximation 466 The p-Dimensional Geometrical Interpretation, 468 The n-Dimensional Geometrical Interpretation, 469 Exercises 470 References 480 9 FACTOR ANALYSIS AND INFERENCE FOR STRUCTURED COVARIANCE MATRICES 9.1 9.2 9.3 Introduction 481 The Orthogonal Factor Model Methods of Estimation 488 481 482 The Principal Component (and Principal Factor) Method, 488 A Modified Approach—the Principal Factor Solution, 494 The Maximum Likelihood Method, 495 A Large Sample Test for the Number of Common Factors, 501 9.4 Factor Rotation 504 Oblique Rotations, 512 9.5 Factor Scores 513 The Weighted Least Squares Method, 514 The Regression Method, 516 9.6 Perspectives and a Strategy for Factor Analysis 519 Supplement 9A: Some Computational Details for Maximum Likelihood Estimation
Recommended Computational Scheme, 528 Maximum Likelihood Estimators of f) ~ LzLį + ψζ Exercises 530 References 538 529 527
xii Contents 10 CANONICAL CORRELATION ANALYSIS 10.1 10.2 10.3 539 Introduction 539 Canonical Variates and Canonical Correlations 539 Interpreting the Population Canonical Variables 545 Identifying the Canonical Variables, 545 Canonical Correlations as Generalizations of Other Correlation Coefficients, 547 The First r Canonical Variables as a Summary ofVariability, 548 A Geometrical Interpretation of the Population Canonical Correlation Analyste 549 10.4 10.5 The Sample Canonical Variates and Sample Canonical Correlations 550 Additional Sample Descriptive Measures 558 Matrices of Errors ofApproximations, 558 Proportions of Explained Sample Variance, 561 10.6 11 Large Sample Inferences Exercises 567 References 574 563 DISCRIMINATION AND CLASSIFICATION 11.1 11.2 11.3 575 Introduction 575 Separation and Classification for Two Populations 576 Classification with Two Multivariate Normal Populations Classification of Normal Populations When Sj = Տշ = Σ, 584 Scaling, 589 Fisher’s Approach to Classification with Two Populations, 590 Is Classification a Good Idea?, 592 Classification of Normal Populations When Տյ Փ ճ2,593 11.4 11.5 Evaluating Classification Functions 596 Classification with Several Populations 606 The Minimum Expected Cost of Misclassification Method, 606 Classification with Normal Populations, 609 11.6 Fisher’s Method for Discriminating among Several Populations 621 11.7 Logistic Regression and Classification Using Fisher’s Discriminants to Classify Objects, 628 634 Introduction, 634 The Logit Model, 634 Logistic Regression Analysis, 636 Classification, 638 Logistic
Regression with Binomial Responses, 640 11.8 Final Comments 644 Including Qualitative Variables, 644 Classification Trees, 644 Neural Networks, 647 Selection of Variables, 648 584
Contents xiii Testing for Group Differences, 648 Graphics, 649 Practical Considerations Regarding Multivariate Normality, 649 Exercises 650 References 669 12 CLUSTERING, DISTANCE METHODS, AND ORDINATION 12.1 12.2 Introduction 671 Similarity Measures 671 673 Distances and Similarity Coefficients for Pairs of Items, 673 Similarities and Association Measures for Pairs of Variables, 677 Concluding Comments on Similarity, 678 12.3 Hierarchical Clustering Methods 680 Single Linkage, 682 Complete Linkage, 685 Average Linkage, 690 Ward’s Hierarchical Clustering Method, 692 Final Comments—Hierarchical Procedures, 695 12.4 Nonhierarchical Clustering Methods 696 K-means Method, 696 Final Comments—Nonhierarchical Procedures, 701 12.5 12.6 Clustering Based on Statistical Models Multidimensional Scaling 706 12.7 Correspondence Analysis 716 703 The Basic Algorithm, 708 Algebraic Development of Correspondence Analysis, 718 Inertia, 725 Interpretation in Two Dimensions, 726 Final Comments, 726 12.8 Biplots for Viewing Sampling Units and Variables 726 12.9 Procrustes Analysis: A Method for Comparing Configurations 732 Constructing Biplots, 727 Constructing the Procrustes Measure ofAgreement, 733 Supplement 12A: Data Mining 740 Introduction, 740 The Data Mining Process, 741 Model Assessment, 742 Exercises 747 References 755 APPENDIX 757 DATA INDEX 764 SUBJECT INDEX 767
|
any_adam_object | 1 |
author | Johnson, Richard Arnold 1937- Wichern, Dean W. 1942- |
author_GND | (DE-588)130043648 (DE-588)135548624 |
author_facet | Johnson, Richard Arnold 1937- Wichern, Dean W. 1942- |
author_role | aut aut |
author_sort | Johnson, Richard Arnold 1937- |
author_variant | r a j ra raj d w w dw dww |
building | Verbundindex |
bvnumber | BV045865333 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278 |
callnumber-search | QA278 |
callnumber-sort | QA 3278 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 830 |
ctrlnum | (OCoLC)1048392278 (DE-599)BVBBV045865333 |
dewey-full | 519.5/35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/35 |
dewey-search | 519.5/35 |
dewey-sort | 3519.5 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Sixth edition [Pearson modern classic edition] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01900nam a2200457 c 4500</leader><controlfield tag="001">BV045865333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190528 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">190508s2019 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">017059694</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780134995397</subfield><subfield code="9">978-0-13-499539-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0134995392</subfield><subfield code="9">0-13-499539-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1048392278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045865333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Richard Arnold</subfield><subfield code="d">1937-</subfield><subfield code="0">(DE-588)130043648</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied multivariate statistical analysis</subfield><subfield code="c">Richard A. Johnson (University of Wisconsin-Madison), Dean W. Wichern (Texas A&M University)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Sixth edition [Pearson modern classic edition]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, New Jersey</subfield><subfield code="b">Pearson</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 773 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pearson modern classic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wichern, Dean W.</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)135548624</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031248734&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031248734</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV045865333 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:37:03Z |
institution | BVB |
isbn | 9780134995397 0134995392 |
language | English |
lccn | 017059694 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031248734 |
oclc_num | 1048392278 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | xviii, 773 Seiten Illustrationen, Diagramme 26 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Pearson |
record_format | marc |
series2 | Pearson modern classic |
spellingShingle | Johnson, Richard Arnold 1937- Wichern, Dean W. 1942- Applied multivariate statistical analysis Multivariate analysis Multivariate Analyse (DE-588)4040708-1 gnd |
subject_GND | (DE-588)4040708-1 (DE-588)4123623-3 |
title | Applied multivariate statistical analysis |
title_auth | Applied multivariate statistical analysis |
title_exact_search | Applied multivariate statistical analysis |
title_full | Applied multivariate statistical analysis Richard A. Johnson (University of Wisconsin-Madison), Dean W. Wichern (Texas A&M University) |
title_fullStr | Applied multivariate statistical analysis Richard A. Johnson (University of Wisconsin-Madison), Dean W. Wichern (Texas A&M University) |
title_full_unstemmed | Applied multivariate statistical analysis Richard A. Johnson (University of Wisconsin-Madison), Dean W. Wichern (Texas A&M University) |
title_short | Applied multivariate statistical analysis |
title_sort | applied multivariate statistical analysis |
topic | Multivariate analysis Multivariate Analyse (DE-588)4040708-1 gnd |
topic_facet | Multivariate analysis Multivariate Analyse Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031248734&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT johnsonrichardarnold appliedmultivariatestatisticalanalysis AT wicherndeanw appliedmultivariatestatisticalanalysis |