Machine Learning for Financial Engineering:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Singapore
World Scientific
2012
|
Schriftenreihe: | Advances in computer science and engineering
|
Schlagwörter: | |
Beschreibung: | 5.4. Universally Consistent Predictions: Unbounded Y. Print version record |
Umfang: | 1 online resource (261 pages) |
ISBN: | 9781848168145 1848168144 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045349640 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 181210s2012 xx o|||| 00||| eng d | ||
020 | |a 9781848168145 |9 978-1-84816-814-5 | ||
020 | |a 1848168144 |9 1-84816-814-4 | ||
035 | |a (ZDB-4-ITC)ocn794328402 | ||
035 | |a (OCoLC)794328402 | ||
035 | |a (DE-599)BVBBV045349640 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 006.31 | |
100 | 1 | |a Gyorfi, Laszlo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning for Financial Engineering |
264 | 1 | |a Singapore |b World Scientific |c 2012 | |
300 | |a 1 online resource (261 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in computer science and engineering | |
500 | |a 5.4. Universally Consistent Predictions: Unbounded Y. | ||
500 | |a Print version record | ||
505 | 8 | |a This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng | |
650 | 7 | |a COMPUTERS / Enterprise Applications / Business Intelligence Tools |2 bisacsh | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 7 | |a Investments / Data processing |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 4 | |a Financial engineering |x Data processing |a Machine learning |a Investments |x Data processing | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Financial Engineering |0 (DE-588)4208404-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Financial Engineering |0 (DE-588)4208404-0 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ottucsak, Gyorgy |e Sonstige |4 oth | |
700 | 1 | |a Walk, Harro |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Gyorfi, Laszlo |t Machine Learning for Financial Engineering |d Singapore : World Scientific, 2012 |z 9781848168138 |
912 | |a ZDB-4-ITC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030736294 |
Datensatz im Suchindex
_version_ | 1818984801444560896 |
---|---|
any_adam_object | |
author | Gyorfi, Laszlo |
author_facet | Gyorfi, Laszlo |
author_role | aut |
author_sort | Gyorfi, Laszlo |
author_variant | l g lg |
building | Verbundindex |
bvnumber | BV045349640 |
collection | ZDB-4-ITC |
contents | This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng |
ctrlnum | (ZDB-4-ITC)ocn794328402 (OCoLC)794328402 (DE-599)BVBBV045349640 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02501nam a2200493zc 4500</leader><controlfield tag="001">BV045349640</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181210s2012 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848168145</subfield><subfield code="9">978-1-84816-814-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848168144</subfield><subfield code="9">1-84816-814-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn794328402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794328402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045349640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gyorfi, Laszlo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning for Financial Engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (261 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in computer science and engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.4. Universally Consistent Predictions: Unbounded Y.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Enterprise Applications / Business Intelligence Tools</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Investments / Data processing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Financial engineering</subfield><subfield code="x">Data processing</subfield><subfield code="a">Machine learning</subfield><subfield code="a">Investments</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Financial Engineering</subfield><subfield code="0">(DE-588)4208404-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ottucsak, Gyorgy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walk, Harro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Gyorfi, Laszlo</subfield><subfield code="t">Machine Learning for Financial Engineering</subfield><subfield code="d">Singapore : World Scientific, 2012</subfield><subfield code="z">9781848168138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030736294</subfield></datafield></record></collection> |
id | DE-604.BV045349640 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:24:47Z |
institution | BVB |
isbn | 9781848168145 1848168144 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030736294 |
oclc_num | 794328402 |
open_access_boolean | |
physical | 1 online resource (261 pages) |
psigel | ZDB-4-ITC |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific |
record_format | marc |
series2 | Advances in computer science and engineering |
spelling | Gyorfi, Laszlo Verfasser aut Machine Learning for Financial Engineering Singapore World Scientific 2012 1 online resource (261 pages) txt rdacontent c rdamedia cr rdacarrier Advances in computer science and engineering 5.4. Universally Consistent Predictions: Unbounded Y. Print version record This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Investments / Data processing fast Machine learning fast Financial engineering Data processing Machine learning Investments Data processing Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Financial Engineering (DE-588)4208404-0 gnd rswk-swf Financial Engineering (DE-588)4208404-0 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Ottucsak, Gyorgy Sonstige oth Walk, Harro Sonstige oth Erscheint auch als Druck-Ausgabe Gyorfi, Laszlo Machine Learning for Financial Engineering Singapore : World Scientific, 2012 9781848168138 |
spellingShingle | Gyorfi, Laszlo Machine Learning for Financial Engineering This volume investigates algorithmic methods based on machine learning in order to design sequential investment strategies for financial markets. Such sequential investment strategies use information collected from the market's past and determine, at the beginning of a trading period, a portfolio; that is, a way to invest the currently available capital among the assets that are available for purchase or investment. The aim is to produce a self-contained text intended for a wide audience, including researchers and graduate students in computer science, finance, statistics, mathematics, and eng COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Investments / Data processing fast Machine learning fast Financial engineering Data processing Machine learning Investments Data processing Maschinelles Lernen (DE-588)4193754-5 gnd Financial Engineering (DE-588)4208404-0 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4208404-0 |
title | Machine Learning for Financial Engineering |
title_auth | Machine Learning for Financial Engineering |
title_exact_search | Machine Learning for Financial Engineering |
title_full | Machine Learning for Financial Engineering |
title_fullStr | Machine Learning for Financial Engineering |
title_full_unstemmed | Machine Learning for Financial Engineering |
title_short | Machine Learning for Financial Engineering |
title_sort | machine learning for financial engineering |
topic | COMPUTERS / Enterprise Applications / Business Intelligence Tools bisacsh COMPUTERS / Intelligence (AI) & Semantics bisacsh Investments / Data processing fast Machine learning fast Financial engineering Data processing Machine learning Investments Data processing Maschinelles Lernen (DE-588)4193754-5 gnd Financial Engineering (DE-588)4208404-0 gnd |
topic_facet | COMPUTERS / Enterprise Applications / Business Intelligence Tools COMPUTERS / Intelligence (AI) & Semantics Investments / Data processing Machine learning Financial engineering Data processing Machine learning Investments Data processing Maschinelles Lernen Financial Engineering |
work_keys_str_mv | AT gyorfilaszlo machinelearningforfinancialengineering AT ottucsakgyorgy machinelearningforfinancialengineering AT walkharro machinelearningforfinancialengineering |