Likelihood-free methods for cognitive science:
Gespeichert in:
Beteiligte Personen: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cham, Switzerland
Springer
[2018]
|
Schriftenreihe: | Computational approaches to cognition and perception
|
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 https://doi.org/10.1007/978-3-319-72425-6 |
Abstract: | This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. |
Umfang: | 1 Online-Ressource (xiv, 129 Seiten) Diagramme |
ISBN: | 9783319724256 |
DOI: | 10.1007/978-3-319-72425-6 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045335947 | ||
003 | DE-604 | ||
005 | 20211209 | ||
007 | cr|uuu---uuuuu | ||
008 | 181204s2018 xx |||| o|||| 00||| eng d | ||
020 | |a 9783319724256 |c Online |9 978-3-319-72425-6 | ||
024 | 7 | |a 10.1007/978-3-319-72425-6 |2 doi | |
035 | |a (ZDB-2-BSP)9783319724256 | ||
035 | |a (OCoLC)1075007865 | ||
035 | |a (DE-599)BVBBV045335947 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-M347 |a DE-188 |a DE-473 |a DE-863 |a DE-20 |a DE-92 |a DE-862 |a DE-703 |a DE-11 | ||
082 | 0 | |a 153 |2 23 | |
100 | 1 | |a Palestro, James J. |e Verfasser |0 (DE-588)117325644X |4 aut | |
245 | 1 | 0 | |a Likelihood-free methods for cognitive science |c James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner |
264 | 1 | |a Cham, Switzerland |b Springer |c [2018] | |
264 | 4 | |c © 2018 | |
300 | |a 1 Online-Ressource (xiv, 129 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computational approaches to cognition and perception | |
520 | 3 | |a This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. | |
650 | 4 | |a Consciousness | |
650 | 4 | |a Cognitive psychology | |
650 | 0 | 7 | |a Kognitionswissenschaft |0 (DE-588)4193780-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Simulation |0 (DE-588)4055072-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | 1 | |a Simulation |0 (DE-588)4055072-2 |D s |
689 | 0 | 2 | |a Kognitionswissenschaft |0 (DE-588)4193780-6 |D s |
689 | 0 | |5 DE-188 | |
700 | 1 | |a Sederberg, Per B. |e Verfasser |4 aut | |
700 | 1 | |a Osth, Adam F. |e Verfasser |4 aut | |
700 | 1 | |a Van Zandt, Trisha |e Verfasser |4 aut | |
700 | 1 | |a Turner, Brandon M. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-72424-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-72426-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-319-89181-1 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-72425-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-BSP | ||
940 | 1 | |q ZDB-2-BSP_2018 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030722724 | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-M347 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-92 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-863 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-862 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-473 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-703 |p ZDB-2-BSP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-72425-6 |l DE-20 |p ZDB-2-BSP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1826000767886032896 |
---|---|
adam_text | |
any_adam_object | |
author | Palestro, James J. Sederberg, Per B. Osth, Adam F. Van Zandt, Trisha Turner, Brandon M. |
author_GND | (DE-588)117325644X |
author_facet | Palestro, James J. Sederberg, Per B. Osth, Adam F. Van Zandt, Trisha Turner, Brandon M. |
author_role | aut aut aut aut aut |
author_sort | Palestro, James J. |
author_variant | j j p jj jjp p b s pb pbs a f o af afo z t v zt ztv b m t bm bmt |
building | Verbundindex |
bvnumber | BV045335947 |
collection | ZDB-2-BSP |
ctrlnum | (ZDB-2-BSP)9783319724256 (OCoLC)1075007865 (DE-599)BVBBV045335947 |
dewey-full | 153 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 153 - Conscious mental processes & intelligence |
dewey-raw | 153 |
dewey-search | 153 |
dewey-sort | 3153 |
dewey-tens | 150 - Psychology |
discipline | Psychologie |
doi_str_mv | 10.1007/978-3-319-72425-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV045335947</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211209</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">181204s2018 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319724256</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-72425-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-72425-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-BSP)9783319724256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1075007865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045335947</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">153</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palestro, James J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117325644X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Likelihood-free methods for cognitive science</subfield><subfield code="c">James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 129 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational approaches to cognition and perception</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consciousness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive psychology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kognitionswissenschaft</subfield><subfield code="0">(DE-588)4193780-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Simulation</subfield><subfield code="0">(DE-588)4055072-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Simulation</subfield><subfield code="0">(DE-588)4055072-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kognitionswissenschaft</subfield><subfield code="0">(DE-588)4193780-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sederberg, Per B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Osth, Adam F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Zandt, Trisha</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turner, Brandon M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-72424-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-72426-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-89181-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BSP</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-BSP_2018</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030722724</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-72425-6</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-BSP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045335947 |
illustrated | Not Illustrated |
indexdate | 2025-03-08T05:00:33Z |
institution | BVB |
isbn | 9783319724256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030722724 |
oclc_num | 1075007865 |
open_access_boolean | |
owner | DE-M347 DE-188 DE-473 DE-BY-UBG DE-863 DE-BY-FWS DE-20 DE-92 DE-862 DE-BY-FWS DE-703 DE-11 |
owner_facet | DE-M347 DE-188 DE-473 DE-BY-UBG DE-863 DE-BY-FWS DE-20 DE-92 DE-862 DE-BY-FWS DE-703 DE-11 |
physical | 1 Online-Ressource (xiv, 129 Seiten) Diagramme |
psigel | ZDB-2-BSP ZDB-2-BSP_2018 |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Springer |
record_format | marc |
series2 | Computational approaches to cognition and perception |
spelling | Palestro, James J. Verfasser (DE-588)117325644X aut Likelihood-free methods for cognitive science James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner Cham, Switzerland Springer [2018] © 2018 1 Online-Ressource (xiv, 129 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Computational approaches to cognition and perception This book explains the foundation of approximate Bayesian computation (ABC), an approach to Bayesian inference that does not require the specification of a likelihood function. As a result, ABC can be used to estimate posterior distributions of parameters for simulation-based models. Simulation-based models are now very popular in cognitive science, as are Bayesian methods for performing parameter inference. As such, the recent developments of likelihood-free techniques are an important advancement for the field. Chapters discuss the philosophy of Bayesian inference as well as provide several algorithms for performing ABC. Chapters also apply some of the algorithms in a tutorial fashion, with one specific application to the Minerva 2 model. In addition, the book discusses several applications of ABC methodology to recent problems in cognitive science. Likelihood-Free Methods for Cognitive Science will be of interest to researchers and graduate students working in experimental, applied, and cognitive science. Consciousness Cognitive psychology Kognitionswissenschaft (DE-588)4193780-6 gnd rswk-swf Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Simulation (DE-588)4055072-2 gnd rswk-swf Bayes-Verfahren (DE-588)4204326-8 s Simulation (DE-588)4055072-2 s Kognitionswissenschaft (DE-588)4193780-6 s DE-188 Sederberg, Per B. Verfasser aut Osth, Adam F. Verfasser aut Van Zandt, Trisha Verfasser aut Turner, Brandon M. Verfasser aut Erscheint auch als Druck-Ausgabe 978-3-319-72424-9 Erscheint auch als Druck-Ausgabe 978-3-319-72426-3 Erscheint auch als Druck-Ausgabe 978-3-319-89181-1 https://doi.org/10.1007/978-3-319-72425-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Palestro, James J. Sederberg, Per B. Osth, Adam F. Van Zandt, Trisha Turner, Brandon M. Likelihood-free methods for cognitive science Consciousness Cognitive psychology Kognitionswissenschaft (DE-588)4193780-6 gnd Bayes-Verfahren (DE-588)4204326-8 gnd Simulation (DE-588)4055072-2 gnd |
subject_GND | (DE-588)4193780-6 (DE-588)4204326-8 (DE-588)4055072-2 |
title | Likelihood-free methods for cognitive science |
title_auth | Likelihood-free methods for cognitive science |
title_exact_search | Likelihood-free methods for cognitive science |
title_full | Likelihood-free methods for cognitive science James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner |
title_fullStr | Likelihood-free methods for cognitive science James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner |
title_full_unstemmed | Likelihood-free methods for cognitive science James J. Palestro, Per B. Sederberg, Adam F. Osth, Trisha Van Zandt, Brandon M. Turner |
title_short | Likelihood-free methods for cognitive science |
title_sort | likelihood free methods for cognitive science |
topic | Consciousness Cognitive psychology Kognitionswissenschaft (DE-588)4193780-6 gnd Bayes-Verfahren (DE-588)4204326-8 gnd Simulation (DE-588)4055072-2 gnd |
topic_facet | Consciousness Cognitive psychology Kognitionswissenschaft Bayes-Verfahren Simulation |
url | https://doi.org/10.1007/978-3-319-72425-6 |
work_keys_str_mv | AT palestrojamesj likelihoodfreemethodsforcognitivescience AT sederbergperb likelihoodfreemethodsforcognitivescience AT osthadamf likelihoodfreemethodsforcognitivescience AT vanzandttrisha likelihoodfreemethodsforcognitivescience AT turnerbrandonm likelihoodfreemethodsforcognitivescience |