Red Cell Rheology:
Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier t...
Gespeichert in:
Weitere beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1978
|
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-642-67059-6 https://doi.org/10.1007/978-3-642-67059-6 |
Zusammenfassung: | Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2] |
Umfang: | 1 Online-Ressource (440 p. 74 illus) |
ISBN: | 9783642670596 |
DOI: | 10.1007/978-3-642-67059-6 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV045187792 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1978 xx o|||| 00||| eng d | ||
020 | |a 9783642670596 |9 978-3-642-67059-6 | ||
024 | 7 | |a 10.1007/978-3-642-67059-6 |2 doi | |
035 | |a (ZDB-2-ENG)978-3-642-67059-6 | ||
035 | |a (OCoLC)863790229 | ||
035 | |a (DE-599)BVBBV045187792 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 620.1 |2 23 | |
084 | |a WW 8840 |0 (DE-625)152145:13423 |2 rvk | ||
245 | 1 | 0 | |a Red Cell Rheology |c edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas |
246 | 1 | 3 | |a Symposium, Held at the Institut de Pathologie Cellulaire, Hopital de Bicetre, France, July, 16-18, 1976 |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1978 | |
300 | |a 1 Online-Ressource (440 p. 74 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2] | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Biomedicine general | |
650 | 4 | |a Life Sciences, general | |
650 | 4 | |a Engineering | |
650 | 4 | |a Life sciences | |
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Rheologie |0 (DE-588)4049828-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erythrozyt |0 (DE-588)4070945-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Erythrozyt |0 (DE-588)4070945-0 |D s |
689 | 0 | 1 | |a Rheologie |0 (DE-588)4049828-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Bessis, Marcel |4 edt | |
700 | 1 | |a Shohet, Stephen B. |4 edt | |
700 | 1 | |a Mohandas, N. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783540090014 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-67059-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030576969 | |
966 | e | |u https://doi.org/10.1007/978-3-642-67059-6 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818984515516760064 |
---|---|
any_adam_object | |
author2 | Bessis, Marcel Shohet, Stephen B. Mohandas, N. |
author2_role | edt edt edt |
author2_variant | m b mb s b s sb sbs n m nm |
author_facet | Bessis, Marcel Shohet, Stephen B. Mohandas, N. |
building | Verbundindex |
bvnumber | BV045187792 |
classification_rvk | WW 8840 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-3-642-67059-6 (OCoLC)863790229 (DE-599)BVBBV045187792 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Biologie |
doi_str_mv | 10.1007/978-3-642-67059-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03711nam a2200589zc 4500</leader><controlfield tag="001">BV045187792</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1978 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642670596</subfield><subfield code="9">978-3-642-67059-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-67059-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-3-642-67059-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863790229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045187792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 8840</subfield><subfield code="0">(DE-625)152145:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Red Cell Rheology</subfield><subfield code="c">edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Symposium, Held at the Institut de Pathologie Cellulaire, Hopital de Bicetre, France, July, 16-18, 1976</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (440 p. 74 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedicine general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life Sciences, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rheologie</subfield><subfield code="0">(DE-588)4049828-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erythrozyt</subfield><subfield code="0">(DE-588)4070945-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erythrozyt</subfield><subfield code="0">(DE-588)4070945-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rheologie</subfield><subfield code="0">(DE-588)4049828-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bessis, Marcel</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shohet, Stephen B.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohandas, N.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783540090014</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-67059-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030576969</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-67059-6</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV045187792 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:20:14Z |
institution | BVB |
isbn | 9783642670596 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030576969 |
oclc_num | 863790229 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (440 p. 74 illus) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Red Cell Rheology edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas Symposium, Held at the Institut de Pathologie Cellulaire, Hopital de Bicetre, France, July, 16-18, 1976 Berlin, Heidelberg Springer Berlin Heidelberg 1978 1 Online-Ressource (440 p. 74 illus) txt rdacontent c rdamedia cr rdacarrier Hemolysis during filtration through micropores studied by Chien et al. [I] showed a dependence on pressure gradient and pore diameter that, at the time of publication, did not permit an easy interpretation of the hemolytic mechanism. Acting on the assumption that thresholds of hemolysis are easier to correlate with physical forces than extents of hemolysis, we performed a series of experi ments repeating some of the conditions reported in [I] and then focusing on low L1P in order to define better the thresholds of hemolysis for several pore sizes. Employing a model of a deformed red cell shape at the pore entrance (based on micropipette observations) we related the force field in the fluid to a biaxial tension in the membrane. The threshold for lysis correlated with a membrane tension of 30 dynes/cm. This quantity is in agreement with lysis data from a number of other investigators employing a variety of mechanisms for introduc ing membrane tension. The sequence of events represented here is: a. Fluid forces and pressure gradients deform the cell into a new, elongated shape. b. Extent of deformation becomes limited by the resistance of the cell mem brane to undergo an increase in area. c. Fluid forces and pressure gradients acting on the deformed cell membrane cause an increase in biaxial tension in the membrane. d. When the strain caused by this tension causes pores to open in the membrane, the threshold for hemolysis has been reached [2] Engineering Continuum Mechanics and Mechanics of Materials Biomedicine general Life Sciences, general Life sciences Continuum mechanics Rheologie (DE-588)4049828-1 gnd rswk-swf Erythrozyt (DE-588)4070945-0 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Erythrozyt (DE-588)4070945-0 s Rheologie (DE-588)4049828-1 s 2\p DE-604 Bessis, Marcel edt Shohet, Stephen B. edt Mohandas, N. edt Erscheint auch als Druck-Ausgabe 9783540090014 https://doi.org/10.1007/978-3-642-67059-6 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Red Cell Rheology Engineering Continuum Mechanics and Mechanics of Materials Biomedicine general Life Sciences, general Life sciences Continuum mechanics Rheologie (DE-588)4049828-1 gnd Erythrozyt (DE-588)4070945-0 gnd |
subject_GND | (DE-588)4049828-1 (DE-588)4070945-0 (DE-588)1071861417 |
title | Red Cell Rheology |
title_alt | Symposium, Held at the Institut de Pathologie Cellulaire, Hopital de Bicetre, France, July, 16-18, 1976 |
title_auth | Red Cell Rheology |
title_exact_search | Red Cell Rheology |
title_full | Red Cell Rheology edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas |
title_fullStr | Red Cell Rheology edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas |
title_full_unstemmed | Red Cell Rheology edited by Marcel Bessis, Stephen B. Shohet, N. Mohandas |
title_short | Red Cell Rheology |
title_sort | red cell rheology |
topic | Engineering Continuum Mechanics and Mechanics of Materials Biomedicine general Life Sciences, general Life sciences Continuum mechanics Rheologie (DE-588)4049828-1 gnd Erythrozyt (DE-588)4070945-0 gnd |
topic_facet | Engineering Continuum Mechanics and Mechanics of Materials Biomedicine general Life Sciences, general Life sciences Continuum mechanics Rheologie Erythrozyt Konferenzschrift |
url | https://doi.org/10.1007/978-3-642-67059-6 |
work_keys_str_mv | AT bessismarcel redcellrheology AT shohetstephenb redcellrheology AT mohandasn redcellrheology AT bessismarcel symposiumheldattheinstitutdepathologiecellulairehopitaldebicetrefrancejuly16181976 AT shohetstephenb symposiumheldattheinstitutdepathologiecellulairehopitaldebicetrefrancejuly16181976 AT mohandasn symposiumheldattheinstitutdepathologiecellulairehopitaldebicetrefrancejuly16181976 |