Dynamic Neural Field Theory for Motion Perception:
Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception. This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boston, MA
Springer US
1999
|
Schriftenreihe: | The Springer International Series in Engineering and Computer Science
469 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-1-4615-5581-0 https://doi.org/10.1007/978-1-4615-5581-0 |
Zusammenfassung: | Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception. This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied for the analysis of perceptual phenomena and its underlying neural processes. Also, similar principles form a basis for the design of computer vision systems as well as the design of artificially behaving systems. The book discusses in detail the application of this theoretical approach to motion perception and will be of great interest to researchers in vision science, psychophysics, and biological visual systems |
Umfang: | 1 Online-Ressource (XIX, 257 p) |
ISBN: | 9781461555810 |
DOI: | 10.1007/978-1-4615-5581-0 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV045185112 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1999 xx o|||| 00||| eng d | ||
020 | |a 9781461555810 |9 978-1-4615-5581-0 | ||
024 | 7 | |a 10.1007/978-1-4615-5581-0 |2 doi | |
035 | |a (ZDB-2-ENG)978-1-4615-5581-0 | ||
035 | |a (OCoLC)1053824864 | ||
035 | |a (DE-599)BVBBV045185112 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 621 |2 23 | |
100 | 1 | |a Giese, Martin A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamic Neural Field Theory for Motion Perception |c by Martin A. Giese |
264 | 1 | |a Boston, MA |b Springer US |c 1999 | |
300 | |a 1 Online-Ressource (XIX, 257 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The Springer International Series in Engineering and Computer Science |v 469 | |
520 | |a Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception. This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied for the analysis of perceptual phenomena and its underlying neural processes. Also, similar principles form a basis for the design of computer vision systems as well as the design of artificially behaving systems. The book discusses in detail the application of this theoretical approach to motion perception and will be of great interest to researchers in vision science, psychophysics, and biological visual systems | ||
650 | 4 | |a Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Neurosciences | |
650 | 4 | |a Neuropsychology | |
650 | 4 | |a Physics | |
650 | 4 | |a Neurosciences | |
650 | 4 | |a Computer graphics | |
650 | 4 | |a Statistical physics | |
650 | 4 | |a Dynamical systems | |
650 | 4 | |a Neuropsychology | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches Modell |0 (DE-588)4150932-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bewegungswahrnehmung |0 (DE-588)4145167-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Bewegungswahrnehmung |0 (DE-588)4145167-3 |D s |
689 | 0 | 2 | |a Dynamisches Modell |0 (DE-588)4150932-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781461375531 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-5581-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030574290 | |
966 | e | |u https://doi.org/10.1007/978-1-4615-5581-0 |l DE-634 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818984509978181632 |
---|---|
any_adam_object | |
author | Giese, Martin A. |
author_facet | Giese, Martin A. |
author_role | aut |
author_sort | Giese, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | BV045185112 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-1-4615-5581-0 (OCoLC)1053824864 (DE-599)BVBBV045185112 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
doi_str_mv | 10.1007/978-1-4615-5581-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02946nam a2200601zcb4500</leader><controlfield tag="001">BV045185112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461555810</subfield><subfield code="9">978-1-4615-5581-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-5581-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-1-4615-5581-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053824864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045185112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giese, Martin A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Neural Field Theory for Motion Perception</subfield><subfield code="c">by Martin A. Giese</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 257 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Springer International Series in Engineering and Computer Science</subfield><subfield code="v">469</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception. This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied for the analysis of perceptual phenomena and its underlying neural processes. Also, similar principles form a basis for the design of computer vision systems as well as the design of artificially behaving systems. The book discusses in detail the application of this theoretical approach to motion perception and will be of great interest to researchers in vision science, psychophysics, and biological visual systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurosciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuropsychology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurosciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuropsychology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bewegungswahrnehmung</subfield><subfield code="0">(DE-588)4145167-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bewegungswahrnehmung</subfield><subfield code="0">(DE-588)4145167-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches Modell</subfield><subfield code="0">(DE-588)4150932-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781461375531</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-5581-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030574290</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4615-5581-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045185112 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:20:09Z |
institution | BVB |
isbn | 9781461555810 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030574290 |
oclc_num | 1053824864 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XIX, 257 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer US |
record_format | marc |
series2 | The Springer International Series in Engineering and Computer Science |
spelling | Giese, Martin A. Verfasser aut Dynamic Neural Field Theory for Motion Perception by Martin A. Giese Boston, MA Springer US 1999 1 Online-Ressource (XIX, 257 p) txt rdacontent c rdamedia cr rdacarrier The Springer International Series in Engineering and Computer Science 469 Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception. This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied for the analysis of perceptual phenomena and its underlying neural processes. Also, similar principles form a basis for the design of computer vision systems as well as the design of artificially behaving systems. The book discusses in detail the application of this theoretical approach to motion perception and will be of great interest to researchers in vision science, psychophysics, and biological visual systems Physics Statistical Physics, Dynamical Systems and Complexity Computer Imaging, Vision, Pattern Recognition and Graphics Neurosciences Neuropsychology Computer graphics Statistical physics Dynamical systems Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Dynamisches Modell (DE-588)4150932-8 gnd rswk-swf Bewegungswahrnehmung (DE-588)4145167-3 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Bewegungswahrnehmung (DE-588)4145167-3 s Dynamisches Modell (DE-588)4150932-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9781461375531 https://doi.org/10.1007/978-1-4615-5581-0 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Giese, Martin A. Dynamic Neural Field Theory for Motion Perception Physics Statistical Physics, Dynamical Systems and Complexity Computer Imaging, Vision, Pattern Recognition and Graphics Neurosciences Neuropsychology Computer graphics Statistical physics Dynamical systems Neuronales Netz (DE-588)4226127-2 gnd Dynamisches Modell (DE-588)4150932-8 gnd Bewegungswahrnehmung (DE-588)4145167-3 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4150932-8 (DE-588)4145167-3 |
title | Dynamic Neural Field Theory for Motion Perception |
title_auth | Dynamic Neural Field Theory for Motion Perception |
title_exact_search | Dynamic Neural Field Theory for Motion Perception |
title_full | Dynamic Neural Field Theory for Motion Perception by Martin A. Giese |
title_fullStr | Dynamic Neural Field Theory for Motion Perception by Martin A. Giese |
title_full_unstemmed | Dynamic Neural Field Theory for Motion Perception by Martin A. Giese |
title_short | Dynamic Neural Field Theory for Motion Perception |
title_sort | dynamic neural field theory for motion perception |
topic | Physics Statistical Physics, Dynamical Systems and Complexity Computer Imaging, Vision, Pattern Recognition and Graphics Neurosciences Neuropsychology Computer graphics Statistical physics Dynamical systems Neuronales Netz (DE-588)4226127-2 gnd Dynamisches Modell (DE-588)4150932-8 gnd Bewegungswahrnehmung (DE-588)4145167-3 gnd |
topic_facet | Physics Statistical Physics, Dynamical Systems and Complexity Computer Imaging, Vision, Pattern Recognition and Graphics Neurosciences Neuropsychology Computer graphics Statistical physics Dynamical systems Neuronales Netz Dynamisches Modell Bewegungswahrnehmung |
url | https://doi.org/10.1007/978-1-4615-5581-0 |
work_keys_str_mv | AT giesemartina dynamicneuralfieldtheoryformotionperception |