Statistics for machine learning: build supervised, unsupervised, and reinforcement learning models using both Python and R
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham ; Mumbai
Packt
July 2017
|
Links: | https://portal.igpublish.com/iglibrary/search/PACKT0000629.html https://portal.igpublish.com/iglibrary/search/PACKT0000629.html https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=4924077 |
Umfang: | 1 Online-Ressource (v, 424 Seiten) Illustrationen, Diagramme (überwiegend farbig) |
ISBN: | 9781788291224 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044998502 | ||
003 | DE-604 | ||
005 | 20220324 | ||
007 | cr|uuu---uuuuu | ||
008 | 180607s2017 xx a||| o|||| 00||| eng d | ||
020 | |a 9781788291224 |c Online |9 978-1-78829-122-4 | ||
035 | |a (ZDB-30-PQE)EBC4924077 | ||
035 | |a (ZDB-38-EBR)ebr11416312 | ||
035 | |a (ZDB-89-EBL)EBL4924077 | ||
035 | |a (ZDB-221-PDA)9781788291224 | ||
035 | |a (OCoLC)1030363674 | ||
035 | |a (DE-599)BVBBV044998502 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-573 |a DE-706 |a DE-11 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Dangeti, Pratap |e Verfasser |0 (DE-588)1198276827 |4 aut | |
245 | 1 | 0 | |a Statistics for machine learning |b build supervised, unsupervised, and reinforcement learning models using both Python and R |c Pratap Dangeti |
264 | 1 | |a Birmingham ; Mumbai |b Packt |c July 2017 | |
264 | 4 | |c © 2017 | |
300 | |a 1 Online-Ressource (v, 424 Seiten) |b Illustrationen, Diagramme (überwiegend farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-78829-575-8 |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-5-WPSE | ||
912 | |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030390692 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0000629.html |l DE-573 |p ZDB-221-PDA |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0000629.html |l DE-706 |p ZDB-221-PDA |q UBY01_ZDB-221-PDA21 |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=4924077 |l DE-29 |p ZDB-30-PQE |q UER_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1818984251833450496 |
---|---|
any_adam_object | |
author | Dangeti, Pratap |
author_GND | (DE-588)1198276827 |
author_facet | Dangeti, Pratap |
author_role | aut |
author_sort | Dangeti, Pratap |
author_variant | p d pd |
building | Verbundindex |
bvnumber | BV044998502 |
classification_rvk | ST 302 |
collection | ZDB-30-PQE ZDB-5-WPSE ZDB-221-PDA |
ctrlnum | (ZDB-30-PQE)EBC4924077 (ZDB-38-EBR)ebr11416312 (ZDB-89-EBL)EBL4924077 (ZDB-221-PDA)9781788291224 (OCoLC)1030363674 (DE-599)BVBBV044998502 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01719nam a2200409 c 4500</leader><controlfield tag="001">BV044998502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220324 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180607s2017 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781788291224</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-78829-122-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC4924077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr11416312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL4924077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDA)9781788291224</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1030363674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044998502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dangeti, Pratap</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1198276827</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics for machine learning</subfield><subfield code="b">build supervised, unsupervised, and reinforcement learning models using both Python and R</subfield><subfield code="c">Pratap Dangeti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">July 2017</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (v, 424 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme (überwiegend farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-78829-575-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-5-WPSE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030390692</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0000629.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0000629.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">UBY01_ZDB-221-PDA21</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=4924077</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044998502 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:16:02Z |
institution | BVB |
isbn | 9781788291224 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030390692 |
oclc_num | 1030363674 |
open_access_boolean | |
owner | DE-29 DE-573 DE-706 DE-11 |
owner_facet | DE-29 DE-573 DE-706 DE-11 |
physical | 1 Online-Ressource (v, 424 Seiten) Illustrationen, Diagramme (überwiegend farbig) |
psigel | ZDB-30-PQE ZDB-5-WPSE ZDB-221-PDA ZDB-221-PDA UBY01_ZDB-221-PDA21 ZDB-30-PQE UER_Einzelkauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Packt |
record_format | marc |
spelling | Dangeti, Pratap Verfasser (DE-588)1198276827 aut Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R Pratap Dangeti Birmingham ; Mumbai Packt July 2017 © 2017 1 Online-Ressource (v, 424 Seiten) Illustrationen, Diagramme (überwiegend farbig) txt rdacontent c rdamedia cr rdacarrier Erscheint auch als Druck-Ausgabe 978-1-78829-575-8 |
spellingShingle | Dangeti, Pratap Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R |
title | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R |
title_auth | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R |
title_exact_search | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R |
title_full | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R Pratap Dangeti |
title_fullStr | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R Pratap Dangeti |
title_full_unstemmed | Statistics for machine learning build supervised, unsupervised, and reinforcement learning models using both Python and R Pratap Dangeti |
title_short | Statistics for machine learning |
title_sort | statistics for machine learning build supervised unsupervised and reinforcement learning models using both python and r |
title_sub | build supervised, unsupervised, and reinforcement learning models using both Python and R |
work_keys_str_mv | AT dangetipratap statisticsformachinelearningbuildsupervisedunsupervisedandreinforcementlearningmodelsusingbothpythonandr |