Quantitative estimation of total body water loss during physical exercise:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Hochschulschrift/Dissertation Buch |
Sprache: | Englisch |
Veröffentlicht: |
Erlangen
FAU University Press
2018
|
Schriftenreihe: | FAU Studien aus der Informatik
4 |
Schlagwörter: | |
Links: | http://d-nb.info/116008775X/34 https://doi.org/10.25593/978-3-96147-095-2 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-97247 https://open.fau.de/handle/openfau/9724 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030359049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | xiv, 218 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 448 g |
ISBN: | 9783961470945 9783961470952 |
DOI: | 10.25593/978-3-96147-095-2 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV044966556 | ||
003 | DE-604 | ||
005 | 20210401 | ||
007 | t| | ||
008 | 180529s2018 gw a||| m||| 00||| eng d | ||
015 | |a 18,N22 |2 dnb | ||
016 | 7 | |a 1159918015 |2 DE-101 | |
020 | |a 9783961470945 |c Broschur: EUR 25.00 (DE), EUR 25.70 (AT) |9 978-3-96147-094-5 | ||
020 | |a 9783961470952 |c Online |9 978-3-96147-095-2 | ||
024 | 3 | |a 9783961470945 | |
035 | |a (OCoLC)1038054565 | ||
035 | |a (DE-599)DNB1159918015 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-29 |a DE-91 |a DE-29T |a DE-12 | ||
100 | 1 | |a Ring, Matthias |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantitative estimation of total body water loss during physical exercise |c Matthias Ring |
246 | 1 | 3 | |a Quantitative Schätzung des Verlustes an Gesamtkörperwasser während körperlicher Betätigung |
264 | 1 | |a Erlangen |b FAU University Press |c 2018 | |
300 | |a xiv, 218 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm, 448 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a FAU Studien aus der Informatik |v 4 | |
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) |d 2018 | ||
650 | 0 | 7 | |a Biomarker |0 (DE-588)4425928-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sportliche Aktivität |0 (DE-588)4182459-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Speichel |0 (DE-588)4056095-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kern |g Mathematik |0 (DE-588)4163599-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Messung |0 (DE-588)4038852-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schweißabsonderung |0 (DE-588)4180459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dehydrierung |0 (DE-588)4149008-3 |2 gnd |9 rswk-swf |
653 | |a machine learning | ||
653 | |a total body water | ||
653 | |a physical exercise | ||
653 | |a dehydration | ||
653 | |a kernel methods | ||
653 | |a branch and bound | ||
653 | |a support vector machine | ||
653 | |a Gaussian kernel | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Biomarker |0 (DE-588)4425928-1 |D s |
689 | 0 | 1 | |a Dehydrierung |0 (DE-588)4149008-3 |D s |
689 | 0 | 2 | |a Kern |g Mathematik |0 (DE-588)4163599-1 |D s |
689 | 0 | 3 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 4 | |a Messung |0 (DE-588)4038852-9 |D s |
689 | 0 | 5 | |a Schweißabsonderung |0 (DE-588)4180459-4 |D s |
689 | 0 | 6 | |a Speichel |0 (DE-588)4056095-8 |D s |
689 | 0 | 7 | |a Sportliche Aktivität |0 (DE-588)4182459-3 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a FAU University Press ein Imprint der Universität Erlangen-Nürnberg |b Universitätsbibliothek |0 (DE-588)1068111240 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |t Quantitative Estimation of Total Body Water Loss During Physical Exercise |d Erlangen : FAU University Press, 2018 |h Online-Ressource |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.25593/978-3-96147-095-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:29-opus4-97247 |
830 | 0 | |a FAU Studien aus der Informatik |v 4 |w (DE-604)BV043902000 |9 4 | |
856 | 4 | 1 | |u http://d-nb.info/116008775X/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://doi.org/10.25593/978-3-96147-095-2 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-97247 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://open.fau.de/handle/openfau/9724 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030359049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030359049 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0001 2018 A 3608 |
---|---|
DE-BY-TUM_katkey | 2347302 |
DE-BY-TUM_location | Mag |
DE-BY-TUM_media_number | 040009180570 |
_version_ | 1821934304259735552 |
adam_text | CONTENTS
I INTRODUCTION 1
1 MOTIVATION, CONTRIBUTIONS, AND OVERVIEW 3
1.1 ESTIMATION OF WATER LOSS DURING PHYSICAL EXERCISE
...........
4
1.1.1 BIOIMPEDANCE AND WATER L O S S ........................ 5
1.1.2 SWEAT MARKERS AND WATER L O S S ........................ 6
1.1.3 SALIVARY MARKERS AND WATER L OSS
.............................
7
1.2 EFFICIENT AND NONLINEAR MACHINE LEARNING
.........................
8
1.2.1 KERNELS FOR BRANCH AND BOUND FEATURE SELECTION . . 9
1.2.2 AN APPROXIMATION OF THE GAUSSIAN RBF
KERNEL.. . . 10
1.3 CONTRIBUTIONS TO THE PROGRESS OF RESEARCH
.........................
10
1.4 OVERVIEW OF THIS T H ESIS
........................................................
13
II MACHINE LEARNING APPROACHES FOR WATER LOSS
ESTIMATION 17
2 FUNDAMENTALS 19
2.1 GROUND TRUTH ASSESSMENT OF ABSOLUTE TOTAL BODY WATER . . 19
2.2 BIOIMPEDANCE-BASED ESTIMATION OF ABSOLUTE TOTAL BODY
W
ATER......................................................................................
22
2.2.1 BASIC P RINCIPLES
........................................................
22
2.2.2 THE MODEL IN BIOIMPEDANCE ANALYSIS
....................
23
2.2.3 THE MODEL IN BIOIMPEDANCE SPECTROSCOPY
...........
23
2.2.4 COMMENTS AND APPLICATION
....................................
24
2.3 GROUND TRUTH ASSESSMENT OF TOTAL BODY WATER L O S S
.........
26
2.4 MACHINE LEARNING FOR REGRESSION P ROBLEM S....................... 26
2.5 LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION
...........................
29
3 RELATED WORK 33
3.1 CONFOUNDING FACTORS ON BIOIMPEDANCE MEASUREMENTS .. 33
3.2 SWEAT ANALYSIS FOR DEHYDRATION D IAGNOSIS
.........................
36
3.3 SALIVA ANALYSIS FOR DEHYDRATION D IAGNOSIS
.........................
37
3.4 SUMMARY OF THE STATE OF THE A RT
..........................................
40
4 DATA COLLECTION 43
4.1
SUBJECTS..................................................................................
43
4.2 PROCEDURES PRECEDING PHYSICAL EXERCISE..............................
45
4.2.1 PRELIMINARY EXAM INATION.........................................
45
4.2.2 STANDARDIZATION P ROCEDURES
....................................
46
4.2.3 GROUND TRUTH ASSESSMENT OF ABSOLUTE TOTAL BODY
W
ATER...........................................................................
47
4.2.4 ANTHROPOMETRIC M EASUREM ENTS.............................. 49
4.3 PROCEDURES DURING PHYSICAL E XERCISE
..................................
49
4.3.1 STANDARDIZATION P ROCEDURES
....................................
49
4.3.2 SUBJECTIVE ASSESSMENT OF THIRST AND F A TIG U E
.........
50
4.3.3 BIO IMPEDANCE M EASUREMENTS
..................................
51
4.3.4 TEMPERATURE M EASUREM ENTS
....................................
52
4.3.5 SWEAT COLLECTION AND ANALYSIS
..................................
53
4.3.6 SALIVARY COLLECTION AND A NALYSIS.............................. 54
4.3.7 BLOOD COLLECTION AND ANALYSIS
..................................
56
4.3.8 GROUND TRUTH ASSESSMENT OF TOTAL BODY WATER LOSS 57
4.4 THE RESULTING DATA SET AND MISSING VALUES
.........................
57
5 METHODS 61
5.1 THE COMMON AIM: ESTIMATION OF TOTAL BODY WATER LOSS . . 61
5.2 A TEMPERATURE-BASED BIOIMPEDANCE CORRECTION FOR WATER
LOSS E STIM ATIO N
.................................................................... 62
5.2.1 N O TA TIO N
.................................................................... 62
5.2.2 PRELIM INARIES
.............................................................
62
5.2.3 A TWO-STAGE APPROACH FOR WATER LOSS ESTIMATION . 63
5.2.4 MACHINE LEARNING FOR THE BIOIMPEDANCE
CORRECTION FUNCTION.................................................. 64
5.2.5 AN INTERMEDIATE STEP FOR COMMERCIAL
BIOIMPEDANCE DEVICES
.............................................
65
5.2.6 CONFIGURATION OF THE MACHINE LEARNING ALGORITHMS 66
5.3 SWEAT MARKERS FOR WATER LOSS ESTIM ATION
...........................
67
5.3.1 INTERPOLATION OF MISSING VALUES.................................
67
5.3.2 STATISTICAL ANALYSIS
....................................................
68
5.3.3 MACHINE LEARNING FOR WATER LOSS ESTIM ATION
.........
66
5.4 SALIVARY MARKERS FOR WATER LOSS E STIM ATIO N
....................... 69
5.4.1 INTERPOLATION OF MISSING VALUES.................................
69
5.4.2 MINIMIZING INTER-SUBJECT VARIABILITY....................... 69
5.4.3 A PRELIMINARY ANALYSIS TO SELECT THE MACHINE
LEARNING ALGORITHM .................................................. 70
5.4.4 CONFIGURATION OF THE MACHINE LEARNING ALGORITHMS 72
5.4.5 FEATURE SELECTION TO REDUCE THE SET OF SALIVARY
M
ARKERS......................................................................
73
5.5 THE COMMON EVALUATION
.................................................... 73
5.5.1 P RO CED U
RE.................................................................. 74
5.5.2 M
EASURES....................................................................
74
6 RESULTS 77
6.1 FIRST EVALUATION MEASURE: A GRAND M E A N
...........................
77
6.2 SECOND EVALUATION MEASURE: FOCUSING ON SUBJECTS
...........
78
6.3 THIRD EVALUATION MEASURE: FOCUSING ON TIM E
....................
79
6.4 STATISTICAL ANALYSIS OF SWEAT M ARK ERS
..................................
80
6.5 FEATURE SELECTION FOR SALIVARY M
ARKERS................................ 80
7 DISCUSSION 93
7.1 THE BIOIMPEDANCE AND TEMPERATURE-BASED APPROACH . . . 93
7.1.1 BIOIMPEDANCE MODELING M E TH O D
...........................
94
7.1.2 THE CHALLENGE OF OBTAINING ADEQUATE TEMPERATURE
M EASUREM
ENTS........................................................... 95
7.1.3 INTEGRATION INTO COMMERCIAL D EV ICES
....................
96
7.1.4 MACHINE LEARNING: LINEAR VERSUS NONLINEAR
M E TH O D
S.................................................................... 96
7.1.5 THE STATE-OF-THE-ART APPROACH: BIOIMPEDANCE
WITHOUT CORRECTION....................................................
97
7.2 THE SWEAT-BASED
APPROACH.................................................. 97
7.2.1 SWEAT MARKERS: CORRELATION COEFFICIENTS AND
PRACTICAL USEFULNESS..................................................
96
7.2.2 DRAWBACKS OF THE MISSING VALUE INTERPOLATION .... 99
7.2.3 IMPROVEMENTS FOR FUTURE S TU D IE S
...........................
99
7.3 THE SALIVA-BASED
APPROACH.................................................. 101
7.3.1 IDENTIFYING THE SALIVARY MARKERS FOR FUTURE
APPLICATIONS
............................................................. 101
7.3.2 MACHINE LEARNING: LINEAR VERSUS NONLINEAR
M E TH O D
S....................................................................
102
7.3.3 INTERPRETATION OF THE FEATURE SELECTION RESULTS .... 103
7.3.4 NONLINEAR NATURE OF THE SALIVARY MARKERS .............. 103
7.4 OBSERVATIONS BEYOND THE APPROACH-SPECIFIC DISCUSSIONS . 105
7.5 PUTTING THE ERROR OF THE WATER LOSS ESTIMATIONS INTO
C O N TE X T
.................................................................................
107
7.6 A COMPARISON WITH THE INVASIVE WATER-DEFICIT EQUATION . . 108
7.7 RESEARCH DIRECTIONS FOR FUTURE
STUDIES................................ 109
III THEORETICAL APPROACHES FOR EFFICIENT AND
NONLINEAR MACHINE LEARNING 111
8 OPTIMAL FEATURE SELECTION FOR NONLINEAR DATA: BRANCH AND
BOUND IN KERNEL SPACE 113
8.1 M
OTIVATION.............................................................................
113
8.2 RELATED W O RK
.........................................................................
114
8.2.1 NOTATION, PRELIMINARIES, AND MONOTONIE CRITERION
F U N C TIO N S
.................................................................. 115
8.2.2 BRANCH AND BOUND WITHOUT HEURISTIC
IM PROVEM
ENTS........................................................... 116
8.2.3 BRANCH AND BOUND WITH HEURISTIC IMPROVEMENTS. . 118
8.3 BRANCH AND BOUND FEATURE SELECTION IN KERNEL SPACE .... 120
8.3.1 SEARCH M
ETHOD........................................................... 120
6.3.2 TRADITIONAL CRITERION FUNCTIONS IN KERNEL SPACE . . . 120
8.3.2.1 NOTATION AND PRELIMINARIES....................... 121
6.3.2.2 THREE MAJOR C HALLENGES
...........................
122
6.3.2.3 A SOLUTION FOR THE THREE MAJOR CHALLENGES 123
5.3.2.4 MONOTONICITY IN KERNEL S P A C E
..................
124
5.3.2.5 COMMENTS AND APPLICATION....................... 126
6.3.3 MEAN CLASS DISTANCE IN KERNEL SPACE AS CRITERION
F U N C TIO N
.................................................................... 127
6.4 EXPERIMENTAL SETUP
.............................................................
127
6.4.1 DATA SETS AND SOFTWARE
.............................................
128
8.4.2 NUMBER OF EIGENPAIRS
.............................................
128
8.4.3 CLASSIFICATION ACCURACY AND RUNTIME
....................
129
8.5
RESULTS....................................................................................
130
8.6 D
ISCUSSION.............................................................................
131
9 AN APPROXIMATION OF THE GAUSSIAN RBF KERNEL FOR EFFICIENT
SVM CLASSIFICATIONS 137
9.1 M
OTIVATION.............................................................................
137
9.2 RELATED W O RK
........................................................................
139
9.2.1 APPROXIMATIONS BASED ON THE NYSTROEM METHOD . . . 139
9.2.2 RANDOM FOURIER FEATURES OR APPROXIMATIONS BASED
ON BOCHNER*S T HEOREM
.............................................
140
9.2.3 APPROXIMATIONS OF THE INTERSECTION KERNEL.............. 141
9.2.4 APPROXIMATIONS OF INNER PRODUCT K ERN ELS.............. 142
9.2.5 APPROXIMATIONS OF ADDITIVE KERNELS AND
APPLICATION-ORIENTED M ETHODS................................ 142
9.2.6 APPROXIMATIONS OF THE GAUSSIAN RBF KERNEL BASED
ON ALGEBRAIC REFORMULATIONS
....................................
143
9.3 M ETHODS
.................................................................................
143
9.3.1 PRELIMINARIES FOR THE KERNEL APPROXIMATION
...........
143
9.3.2 KERNEL APPROXIM ATION
.............................................
145
9.3.3 PRELIMINARIES FOR THE ERROR ANALYSIS
.........................
146
9.3.4 RELATIVE ERROR OF THE KERNEL APPROXIM ATION
...........
147
9.4 EXPERIMENTAL EVALUATION
......................................................
150
9.4.1 VISUALIZATION OF THE RELATIVE E RRO R
...........................
150
9.4.2 VISUALIZATION OF THE DECISION BOUNDARY
..................
151
9.4.3 CLASSIFICATION EXPERIM ENTS
......................................
152
9.4.3.1 DATA S E TS ....................................................
152
9.4.3.2 EXPERIMENTAL S E TU P
..................................
153
9.4.3.3 RESULTS
........................................................
153
9.4.3.4 DISCUSSION.................................................. 154
9.5 COMPARISON TO RELATED WORK
...............................................
155
IV SYNTHESIS 163
10 SUMMARY, DISCUSSION OF SCIENTIFIC CONTRIBUTIONS, AND
CONCLUSIONS 165
10.1 TEMPERATURE-BASED BIOIMPEDANCE CORRECTION
..................
165
10.2 SWEAT MARKERS FOR WATER LOSS ESTIM ATION
...........................
166
10.3 SALIVARY MARKERS FOR WATER LOSS E STIM ATION.......................
167
10.4 BRANCH AND BOUND FEATURE SELECTION IN KERNEL SPACE .... 169
10.5 AN APPROXIMATION OF THE GAUSSIAN RBF KERNEL
..................
170
10.6 CONCLUSIONS
..........................................................................
171
11 OUTLOOK 173
11.1 FUTURE WORK FOR WATER LOSS ESTIMATION
.............................
173
11.2 FUTURE WORK FOR EFFICIENT AND NONLINEAR MACHINE
LEARNING.................................................................................
175
11.3 FUTURE WORK BEYOND INDIVIDUAL APPROACHES....................... 177
LIST OF FIGURES
181
LIST OF TABLES
183
LIST OF ABBREVIATIONS
185
BIBLIOGRAPHY
187
|
any_adam_object | 1 |
author | Ring, Matthias |
author_facet | Ring, Matthias |
author_role | aut |
author_sort | Ring, Matthias |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV044966556 |
collection | ebook |
ctrlnum | (OCoLC)1038054565 (DE-599)DNB1159918015 |
doi_str_mv | 10.25593/978-3-96147-095-2 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03813nam a22007938cb4500</leader><controlfield tag="001">BV044966556</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210401 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">180529s2018 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">18,N22</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1159918015</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783961470945</subfield><subfield code="c">Broschur: EUR 25.00 (DE), EUR 25.70 (AT)</subfield><subfield code="9">978-3-96147-094-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783961470952</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-96147-095-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783961470945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1038054565</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1159918015</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ring, Matthias</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative estimation of total body water loss during physical exercise</subfield><subfield code="c">Matthias Ring</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Quantitative Schätzung des Verlustes an Gesamtkörperwasser während körperlicher Betätigung</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen</subfield><subfield code="b">FAU University Press</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 218 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm, 448 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">FAU Studien aus der Informatik</subfield><subfield code="v">4</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)</subfield><subfield code="d">2018</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomarker</subfield><subfield code="0">(DE-588)4425928-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sportliche Aktivität</subfield><subfield code="0">(DE-588)4182459-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Speichel</subfield><subfield code="0">(DE-588)4056095-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kern</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163599-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schweißabsonderung</subfield><subfield code="0">(DE-588)4180459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dehydrierung</subfield><subfield code="0">(DE-588)4149008-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">total body water</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">physical exercise</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dehydration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">kernel methods</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">branch and bound</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">support vector machine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gaussian kernel</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biomarker</subfield><subfield code="0">(DE-588)4425928-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dehydrierung</subfield><subfield code="0">(DE-588)4149008-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kern</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4163599-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Messung</subfield><subfield code="0">(DE-588)4038852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Schweißabsonderung</subfield><subfield code="0">(DE-588)4180459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Speichel</subfield><subfield code="0">(DE-588)4056095-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Sportliche Aktivität</subfield><subfield code="0">(DE-588)4182459-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">FAU University Press ein Imprint der Universität Erlangen-Nürnberg</subfield><subfield code="b">Universitätsbibliothek</subfield><subfield code="0">(DE-588)1068111240</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Quantitative Estimation of Total Body Water Loss During Physical Exercise</subfield><subfield code="d">Erlangen : FAU University Press, 2018</subfield><subfield code="h">Online-Ressource</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.25593/978-3-96147-095-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:29-opus4-97247</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">FAU Studien aus der Informatik</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV043902000</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://d-nb.info/116008775X/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.25593/978-3-96147-095-2</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-97247</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://open.fau.de/handle/openfau/9724</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030359049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030359049</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044966556 |
illustrated | Illustrated |
indexdate | 2024-12-20T18:15:31Z |
institution | BVB |
institution_GND | (DE-588)1068111240 |
isbn | 9783961470945 9783961470952 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030359049 |
oclc_num | 1038054565 |
open_access_boolean | 1 |
owner | DE-29 DE-91 DE-BY-TUM DE-29T DE-12 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-29T DE-12 |
physical | xiv, 218 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 448 g |
psigel | ebook |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | FAU University Press |
record_format | marc |
series | FAU Studien aus der Informatik |
series2 | FAU Studien aus der Informatik |
spellingShingle | Ring, Matthias Quantitative estimation of total body water loss during physical exercise FAU Studien aus der Informatik Biomarker (DE-588)4425928-1 gnd Sportliche Aktivität (DE-588)4182459-3 gnd Speichel (DE-588)4056095-8 gnd Kern Mathematik (DE-588)4163599-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Messung (DE-588)4038852-9 gnd Schweißabsonderung (DE-588)4180459-4 gnd Dehydrierung (DE-588)4149008-3 gnd |
subject_GND | (DE-588)4425928-1 (DE-588)4182459-3 (DE-588)4056095-8 (DE-588)4163599-1 (DE-588)4193754-5 (DE-588)4038852-9 (DE-588)4180459-4 (DE-588)4149008-3 (DE-588)4113937-9 |
title | Quantitative estimation of total body water loss during physical exercise |
title_alt | Quantitative Schätzung des Verlustes an Gesamtkörperwasser während körperlicher Betätigung |
title_auth | Quantitative estimation of total body water loss during physical exercise |
title_exact_search | Quantitative estimation of total body water loss during physical exercise |
title_full | Quantitative estimation of total body water loss during physical exercise Matthias Ring |
title_fullStr | Quantitative estimation of total body water loss during physical exercise Matthias Ring |
title_full_unstemmed | Quantitative estimation of total body water loss during physical exercise Matthias Ring |
title_short | Quantitative estimation of total body water loss during physical exercise |
title_sort | quantitative estimation of total body water loss during physical exercise |
topic | Biomarker (DE-588)4425928-1 gnd Sportliche Aktivität (DE-588)4182459-3 gnd Speichel (DE-588)4056095-8 gnd Kern Mathematik (DE-588)4163599-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Messung (DE-588)4038852-9 gnd Schweißabsonderung (DE-588)4180459-4 gnd Dehydrierung (DE-588)4149008-3 gnd |
topic_facet | Biomarker Sportliche Aktivität Speichel Kern Mathematik Maschinelles Lernen Messung Schweißabsonderung Dehydrierung Hochschulschrift |
url | http://d-nb.info/116008775X/34 https://doi.org/10.25593/978-3-96147-095-2 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-97247 https://open.fau.de/handle/openfau/9724 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030359049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV043902000 |
work_keys_str_mv | AT ringmatthias quantitativeestimationoftotalbodywaterlossduringphysicalexercise AT fauuniversitypresseinimprintderuniversitaterlangennurnberguniversitatsbibliothek quantitativeestimationoftotalbodywaterlossduringphysicalexercise AT ringmatthias quantitativeschatzungdesverlustesangesamtkorperwasserwahrendkorperlicherbetatigung AT fauuniversitypresseinimprintderuniversitaterlangennurnberguniversitatsbibliothek quantitativeschatzungdesverlustesangesamtkorperwasserwahrendkorperlicherbetatigung |
Online lesen (frei zugänglich)
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Bibliotheksmagazin
Signatur: |
0001 2018 A 3608
Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |