Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Covariant Schrödinger semigrou...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Buchumschlag
Covariant Schrödinger semigroups on Riemannian manifolds:
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Güneysu, Batu 1982- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham Birkhäuser [2017]
Schriftenreihe:Operator theory volume 264
Schlagwörter:
Mathematics
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial differential equations
Global Analysis and Analysis on Manifolds
Partial Differential Equations
Links:https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
https://doi.org/10.1007/978-3-319-68903-6
Umfang:1 Online-Ressource (XVIII, 239 Seiten)
ISBN:9783319689036
ISSN:0255-0156
DOI:10.1007/978-3-319-68903-6
Internformat

MARC

LEADER 00000nam a2200000zcb4500
001 BV044702282
003 DE-604
005 20220208
007 cr|uuu---uuuuu
008 180108s2017 xx o|||| 00||| eng d
020 |a 9783319689036  |c Online  |9 978-3-319-68903-6 
024 7 |a 10.1007/978-3-319-68903-6  |2 doi 
035 |a (ZDB-2-SMA)9783319689036 
035 |a (OCoLC)1018468747 
035 |a (DE-599)BVBBV044702282 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-188  |a DE-523  |a DE-703  |a DE-863  |a DE-20  |a DE-739  |a DE-634  |a DE-862  |a DE-824 
082 0 |a 514.74  |2 23 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Güneysu, Batu  |d 1982-  |e Verfasser  |0 (DE-588)1148467122  |4 aut 
245 1 0 |a Covariant Schrödinger semigroups on Riemannian manifolds  |c Batu Güneysu 
264 1 |a Cham  |b Birkhäuser  |c [2017] 
300 |a 1 Online-Ressource (XVIII, 239 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Operator theory  |v volume 264  |x 0255-0156 
650 4 |a Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Manifolds (Mathematics) 
650 4 |a Partial differential equations 
650 4 |a Mathematics 
650 4 |a Global Analysis and Analysis on Manifolds 
650 4 |a Partial Differential Equations 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-68902-9 
810 2 |a Operator Theory  |t Advances and Applications  |v 264  |w (DE-604)BV035421307  |9 264 
856 4 0 |u https://doi.org/10.1007/978-3-319-68903-6  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2017 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030098957 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-863  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-862  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-523  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68903-6  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-OTHR_katkey 5964342
DE-BY-TUM_katkey 2298498
_version_ 1831257179649212416
any_adam_object
author Güneysu, Batu 1982-
author_GND (DE-588)1148467122
author_facet Güneysu, Batu 1982-
author_role aut
author_sort Güneysu, Batu 1982-
author_variant b g bg
building Verbundindex
bvnumber BV044702282
classification_rvk SK 620
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783319689036
(OCoLC)1018468747
(DE-599)BVBBV044702282
dewey-full 514.74
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.74
dewey-search 514.74
dewey-sort 3514.74
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-68903-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02880nam a2200613zcb4500</leader><controlfield tag="001">BV044702282</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180108s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319689036</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-68903-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-68903-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319689036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1018468747</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044702282</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Güneysu, Batu</subfield><subfield code="d">1982-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1148467122</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Covariant Schrödinger semigroups on Riemannian manifolds</subfield><subfield code="c">Batu Güneysu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 239 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">volume 264</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-68902-9</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Operator Theory</subfield><subfield code="t">Advances and Applications</subfield><subfield code="v">264</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">264</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030098957</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68903-6</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044702282
illustrated Not Illustrated
indexdate 2024-12-20T18:09:24Z
institution BVB
isbn 9783319689036
issn 0255-0156
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030098957
oclc_num 1018468747
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
physical 1 Online-Ressource (XVIII, 239 Seiten)
psigel ZDB-2-SMA
ZDB-2-SMA_2017
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Birkhäuser
record_format marc
series2 Operator theory
spellingShingle Güneysu, Batu 1982-
Covariant Schrödinger semigroups on Riemannian manifolds
Mathematics
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial differential equations
Global Analysis and Analysis on Manifolds
Partial Differential Equations
title Covariant Schrödinger semigroups on Riemannian manifolds
title_auth Covariant Schrödinger semigroups on Riemannian manifolds
title_exact_search Covariant Schrödinger semigroups on Riemannian manifolds
title_full Covariant Schrödinger semigroups on Riemannian manifolds Batu Güneysu
title_fullStr Covariant Schrödinger semigroups on Riemannian manifolds Batu Güneysu
title_full_unstemmed Covariant Schrödinger semigroups on Riemannian manifolds Batu Güneysu
title_short Covariant Schrödinger semigroups on Riemannian manifolds
title_sort covariant schrodinger semigroups on riemannian manifolds
topic Mathematics
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial differential equations
Global Analysis and Analysis on Manifolds
Partial Differential Equations
topic_facet Mathematics
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial differential equations
Global Analysis and Analysis on Manifolds
Partial Differential Equations
url https://doi.org/10.1007/978-3-319-68903-6
volume_link (DE-604)BV035421307
work_keys_str_mv AT guneysubatu covariantschrodingersemigroupsonriemannianmanifolds
  • Verfügbarkeit
Bestellen (Login erforderlich)
Online lesen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt