Applied nanoindentation in advanced materials:
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials ad...
Gespeichert in:
Weitere beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Chichester, UK
John Wiley & Sons
2017
|
Schlagwörter: | |
Links: | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030051324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Zusammenfassung: | Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: -A one stop solution for scholars and researchers to learn applied aspects of nanoindentation -Contains contributions from leading researchers in the field -Includes the analysis of key properties that can be studied using the nanoindentation technique -Covers recent innovations -Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis |
Beschreibung: | Includes bibliographical references and index |
Umfang: | 1 Online-Ressource (xxiv, 680 Seiten) |
ISBN: | 9781119084518 9781119084501 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV044653665 | ||
003 | DE-604 | ||
005 | 20240421 | ||
007 | cr|uuu---uuuuu | ||
008 | 171127s2017 xx o|||| 00||| eng d | ||
020 | |a 9781119084518 |c Online |9 9781119084518 | ||
020 | |a 9781119084501 |c Online |9 9781119084501 | ||
024 | 7 | |a 10.1002/9781119084501 |2 doi | |
035 | |a (OCoLC)1013179533 | ||
035 | |a (DE-599)BVBBV044653665 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-861 |a DE-Aug4 |a DE-29 | ||
082 | 0 | |a 620.1/153 | |
245 | 1 | 0 | |a Applied nanoindentation in advanced materials |c edited by Atul Tiwari and Sridhar Natarajan |
264 | 1 | |a Chichester, UK |b John Wiley & Sons |c 2017 | |
300 | |a 1 Online-Ressource (xxiv, 680 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: -A one stop solution for scholars and researchers to learn applied aspects of nanoindentation -Contains contributions from leading researchers in the field -Includes the analysis of key properties that can be studied using the nanoindentation technique -Covers recent innovations -Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis | ||
650 | 4 | |a TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Reference / bisacsh | |
650 | 4 | |a Materials / Testing | |
650 | 4 | |a Nanotechnology | |
650 | 4 | |a Nanostructured materials / Formability | |
700 | 1 | |a Tiwari, Atul |0 (DE-588)1081557192 |4 edt | |
700 | 1 | |a Natarajan, Sridhar |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119084495 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030051324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030051324 | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 |l DE-861 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 |l DE-473 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 |l DE-29 |p ZDB-35-WIC |q UER_PDA_WIC_Kauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819337657756418048 |
---|---|
adam_text | Contents
List of Contributors xvii
Preface xxiii
Part I 1
1 Determination of Residual Stresses by Nanoindentation 3
P-L Larsson
1 1 Introduction 3
1 2 Theoretical Background 5
1 3 Determination of Residual Stresses 12
131 Low Hardening Materials and Equi-biaxial Stresses 12
132 General Residual Stresses 13
133 Strain-hardening Effects 15
134 Conclusions and Remarks 15
References 16
2 Nanomechanical Characterization of Carbon Films 19
Ben D Beoke and Tomasz W Liskiewicz
2 1 Introduction 19
211 Types of DLC Coatings and their Mechanical Properties 19
212 Carbon Films Processing Methods 20
213 Residual Stresses in Carbon Films 21
214 Friction Properties of Carbon Films 22
215 Multilayering Strategies 23
216 Applications of Carbon Films 24
217 Optimization/testing Challenges 24
2 2 Factors Influencing Reliable and Comparable Hardness and Elastic Modulus
Determination 24
221 The International Standard for Depth-sensing Indentation: EN ISO 14577-4
2007 24
222 Challenges in Ultra-thin Films 27
223 Indenter Geometry 28
224 Surface Roughness 28
2 3 Deformation in Indentation Contact 30
vi Contents
231 The Relationship Between HIE and Plastic and Elastic Work in
Nanoindentation 30
232 Variation in HIE and Plasticity Index for Different DLC Films 31
233 Cracking and Delamination 32
234 Coatings on Si: Si Phase Transformation 33
2 4 Nano-scratch Testing 34
241 Scan Speed and Loading Rate 35
242 Influence of Probe Radius 36
243 Contact Pressure 36
244 Role of the Si Substrate in Nano-scratch Testing 38
245 Failure Behaviour of ta-C on Si 40
246 Film Stress and Thickness 43
247 Repetitive Nano-wear by Multi-pass Nano-scratch Tests 44
248 Load Dependence of Friction 46
2 5 Impact and Fatigue Resistance of DLC Films Using Nano-impact Testing 46
251 Compositionally Graded a-C and a-C:H Coatings on M42 Tool Steel 49
252 DLC/Cr Coating on Steel 51
253 PACVD a-C:H Coatings on M2 Steel 51
254 DLC Films on Si-film Thickness, Probe Geometry, Impact Force and
Interfacial Toughness 52
2 6 Wear Resistance of Amorphous Carbon Films Using Nano-fretting
Testing 54
261 Nano-fretting: State-of-the-art 55
262 Nano-fretting of Thin DLC Films on Si 55
263 Nano-fretting of DLC Coatings on Steel 57
2 7 Conclusion 58
References 59
3 Mechanical Evaluation of Nanocoatings under Extreme Environments
for Application in Energy Systems 69
EJ Rubio, G Martinez, S K Gullapalli, M Noor-A-Alam and C V Ramana
3 1 Introduction 69
3 2 Thermal Barrier Coatings 70
321 Nanoindentation Characterization of TBCs 72
322 Mechanical Properties of Hafnium-based TBCs 74
3 3 Nanoindentation Evaluation of Coatings for Nuclear Power Generation
Applications 76
331 Evaluation of W-based Materials for Nuclear Application 77
3 4 Conclusions and Outlook 80
Acknowledgments 81
References 81
4 Evaluation of the Nanotribological Properties of Thin Films 83
Shojiro Miyake and Mei Wang
4 1 Introduction 83
4 2 Evaluation Methods of Nanotribology 83
4 3 Nanotribology Evaluation Methods and Examples 84
Contents vii
431 Nanoindentation Evaluation 84
432 Nanowear and Friction Evaluation 88
4321 Nanowear Properties 89
43 2 2 Frictional Properties with Different Lubricants 91
4 3 23 Nanowear and Frictional Properties, Evaluated with and without
Vibrations 95
433 Evaluation of the Force Modulation 98
434 Evaluation of the Mechanical and Other Physical Properties 102
4 4 Conclusions 108
References 108
5 Nanoindentation on Tribological Coatings 111
Francisco J G Silva
5 1 Introduction 111
5 2 Relevant Properties on Coatings for Tribological Applications 116
5 3 How can Nanoindentation Help Researchers to Characterize Coatings? 116
531 Thin Coatings Nanoindentation Procedures 118
532 Hardness Determination 120
533 Young’s Modulus Determination 123
534 Tensile Properties Determination 124
535 Fracture Toughness in Thin Films 125
536 Coatings Adhesion Analysis 126
537 Stiffness and Other Mechanical Properties 127
538 Simulation and Models Applied to Nanoindentation 128
References 129
6 Nanoindentation of Macro-porous Materials for Elastic Modulus and
Hardness Determination 135
Zhangwei Chen
6 1 Introduction 135
611 Nanoindentation Fundamentals for Dense Materials 135
612 Introduction to Porous Materials 137
613 Studies of Elastic Properties of Porous Materials 138
6 2 Nanoindentation of Macro-porous Bulk Ceramics 140
6 3 Nanoindentation of Bone Materials 143
6 4 Nanoindentation of Macro-porous Films 144
641 Substrate Effect 145
642 Densification Effect 147
643 Surface Roughness Effect 149
6 5 Concluding Remarks 151
Acknowledgements 151
References 151
7 Nanoindentation Applied to DC Plasma Nitrided Parts 157
Silvio Francisco Brunatto and Carlos Maurfcio Lepienski
7 1 Introduction 157
7 2 Basic Aspects of DC Plasma Nitrided Parts 160
viii Contents
721 The Potential Distribution for an Abnormal Glow Discharge 160
722 Plasma-surface Interaction in Cathode Surface 161
723 Electrical Configuration Modes in DC Plasma Nitriding 162
7 3 Basic Aspects of Nanoindentation in Nitrided Surfaces 163
7 4 Examples of Nanoindentation Applied to DC Plasma Nitrided Parts 167
741 Mechanical Polishing: Nanoindentation in Niobium 169
742 Surface Roughness: Nanoindentation in DC Plasma Nitrided Parts 170
7421 Nanoindentation in DC Plasma Nitrided Niobium 170
7422 Nanoindentation in DC Plasma Nitrided Titanium 174
7A2 3 Nanoindentation in DC Plasma Nitrided Martensitic Stainless Steel 175
743 Nitrogen-concentration Gradients: Nanoindentation in DC Plasma Nitrided
Tool Steel 176
744 Crystallographic Orientation: Nanoindentation in DC Plasma Nitrided
Austenitic Stainless Steels 177
7 5 Conclusion 178
Acknowledgements 179
References 179
8 Nanomechanical Properties of Defective Surfaces 183
Oscar Rodriguez de la Fuente
8 1 Introduction 183
811 The Role of Surface Defects in Plasticity 183
812 Experimental Techniques for Visualization and Generation of Surface
Defects 184
813 Approaches to Study and Probe Nanomechanical Properties 185
8 2 Homogeneous and Heterogeneous Dislocation Nucleation 186
821 Homogeneous Dislocation Nucleation 186
822 Heterogeneous Dislocation Nucleation 188
8 3 Surface Steps 190
831 Studies on Surface Steps 191
8 4 Subsurface Defects 194
841 Sub-surface Vacancies 195
842 Sub-surface Impurities and Dislocations 195
8 5 Rough Surfaces 197
8 6 Conclusions 200
Acknowledgements 200
References 200
9 Viscoelastic and Tribological Behavior of Ai203 Reinforced Toughened
Epoxy Hybrid Nanocomposites 205
Mandhakini Mohandas and Alagar Muthukaruppan
9 1 Introduction 205
9 2 Experimental 206
921 Materials 206
922 FTIR Analysis 208
923 Results and Discussion 209
9231 Viscoeleastic Properties 210
9232 Hardness and Modulus by Nanoindentation 214
9 3 Conclusion 219
References 220
10 Nanoindentation of Hybrid Foams 223
Anne Jung, Zhaoyu Chen and Stefan Diebels
10 1 Introduction 223
10 1 1 Motivation 223
10 1 2 State of the art of Nanoindentation of Metal and Metal Foam 226
10 2 Sample Material and Preparation 230
10 2 1 A1 Material and Coating Process 230
10 2 2 Sample Preparation for Nanoindentation 231
10 3 Nanoindentation Experiments 232
10 3 1 Experimental Setup 232
10 3 2 Results and Discussion 232
10 4 Conclusions and Outlook 239
Acknowledgements 240
References 240
11 AFM-based Nanoindentation of Cellulosic Fibers 247
Christian Ganser and Christian Teichert
11 1 Introduction 247
11 2 Experimental 248
11 2 1 AFM Instrumentation 248
11 2 2 AFM-based Nanoindentation 250
11 2 3 Comparison with Results of Classical NI 255
11 2 4 Sample Preparation 256
11 3 Mechanical Properties of Cellulose Fibers 257
11 3 1 Pulp Fibers 257
11 3 2 Swollen Viscose Fibers 259
11 4 Conclusions and Outlook 265
Acknowledgments 265
References 266
12 Evaluation of Mechanical and Tribological Properties of Coatings for
Stainless Steel 269
A Mina, J C Caicedo, W Aperador, M Mozafari and H H Caicedo
12 1 Introduction 269
12 2 Experimental Details 270
12 3 Results and Discussion 271
12 3 1 Crystal Lattice Arrangement of ß-TCP/Ch Coatings 271
12 3 2 Surface Coating Analysis 272
12 3 3 Morphological Analysis of the ß-TCP-Ch Coatings 274
12 3 4 Mechanical Properties 276
12 3 5 Tribological Properties 279
12 3 6 Surface Wear Analysis 280
12 3 7 Adhesion Behaviour 281
Contents
12 4 Conclusions 283
Acknowledgements 283
References 283
13 Nanoindentation in Metallic Glasses 287
Vahid Nekouie, Anish Roy and Vadim V Silberschmidt
13 1 Introduction 287
13 1 1 Motivation 287
13 1 2 Nanoindentation Studies of Metallic Glasses 288
13 121 Pile-up and Sink-in 291
13 122 Indentation Size Effect 293
13 2 Experimental Studies 296
13 2 1 Nano Test Platform III Indentation System 296
13 2 2 Calibration 297
13 221 Frame Compliance 298
13 222 Cross-hair Calibration 298
13 223 Indenter Area Function 298
13 2 3 Experimental Procedure 301
13 2 4 Results and Discussion 301
13 3 Conclusions 307
References 308
Part II 313
14 Molecular Dynamics Modeling of Nanoindentation 315
CJ Ruestes, EM Bringa, Y Gao and HM Urbassek
14 1 Introduction 315
14 2 Methods 316
14 2 1 The Indentation Tip 318
14 2 2 Control Methods Used in Experiment and in MD Simulations 319
14 2 3 Penetration Rate 320
14 3 Interatomic Potentials 321
14 3 1 Elastic Constants 321
14 3 2 Generalized Stacking Fault Energies 322
14 4 Elastic Regime 324
14 5 The Onset of Plasticity 325
14 5 1 Evolution of the Dislocation Network 325
14 5 2 Contact Area and Hardness 327
14 5 3 Indentation Rate Effect 328
14 5 4 Tip Diameter Effect 329
14 6 The Plastic Zone: Dislocation Activity 329
14 6 1 Face-centered Cubic Metals 329
14 6 2 Body-centered Cubic Metals 330
14 6 3 Quantification of Dislocation Length and Density 331
14 6 4 Pile-up 333
14 6 5 Geometrically-necessary Dislocations and the Identification of Intrinsic
Length-scales from Hardness Simulations 334
14 7 Outlook 336
Acknowledgements 337
References 337
15 Continuum Modelling and Simulation of Indentation in Transparent
Single Crystalline Minerals and Energetic Solids 347
J D Clayton, B B Aydelotte, R Becker, C D Hilton and 1 Knap
15 1 Introduction 347
15 2 Theory: Material Modelling 349
15 2 1 General Multi-field Continuum Theory 349
15 2 2 Crystal Plasticity Theory 350
15 2 3 Phase Field Theory for Twinning 351
15 3 Application: Indentation of RDX Single Crystals 352
15 3 1 Review of Prior Work 353
15 3 2 New Results and Analysis 354
15 4 Application: Indentation of Calcite Single Crystals 356
15 4 1 Review of Prior Work 359
15 4 2 New Results and Analysis 361
15 5 Conclusions 364
Acknowledgements 365
References 365
16 Nanoindentation Modeling: From Finite Element to Atomistic
Simulations 369
Daniel Esque- de los Ojos and Jordi Sort
16 1 Introduction 369
16 2 Scaling and Dimensional Analysis Applied to Indentation Modelling 370
16 2 1 Geometrical Similarity of Indenter Tips 370
16 2 2 Dimensional Analysis 371
16 2 3 Dimensional Analysis Applied to Extraction of Mechanical Properties 372
16 3 Finite Element Simulations of Advanced Materials 374
16 3 1 Nanocrystalline Porous Materials and Pressure-sensitive Models 375
16 3 2 Finite Element Simulations of ID Structures: Nanowires 378
16 3 3 Continuum Crystal Plasticity Finite Element Simulations: Nanoindentation of
Thin Solid Films 380
16 4 Nucleation and Interaction of Dislocations During Single Crystal
Nanoindentaion: Atomistic Simulations 383
16 4 1 Dislocation Dynamics Simulations 383
16 4 2 Molecular Dynamics Simulations 385
References 386
17 Nanoindentation in silico of Biological Particles 393
Olga Kononova, Kenneth A Marx and Valeri Barsegov
17 1 Introduction 393
17 2 Computational Methodology of Nanoindentation in silico 395
xii Contents
17 2 1 Molecular Modelling of Biological Particles 395
17 2 2 Coarse-graining: Self-organized Polymer (SOP) Model 396
17 2 3 Multiscale Modeling Primer: SOP Model Parameterization for Microtubule
Polymers 398
17 2 4 Using Graphics Processing Units as Performance Accelerators 399
17 2 5 Virtual AFM Experiment: Forced Indentation in silico of Biological
Particles 401
17 3 Biological Particles 403
17 3 1 Cylindrical Particles: Microtubule Polymers 403
17 3 2 Spherical Particles: CCMV Shell 404
17 4 Nanoindentation in silico: Probing Reversible Changes in Near-equilibrium
Regime 406
17 4 1 Probing Reversible Transitions 406
17 4 2 Studying Near-equilibrium Dynamics 407
17 5 Application of in silico Nanoindentation: Dynamics of Deformation of MT
and CCMV 409
17 5 1 Long Polyprotein - Microtubule Protofilament 409
17 5 2 Cylindrical Particle - Microtubule Polymer 411
17 5 3 Spherical Particle - CCMV Protein Shell 416
17 6 Concluding Remarks 421
References 424
18 Modeling and Simulations in Nanoindentation 429
Yi Sun and Fanlin Zeng
18 1 Introduction 429
18 2 Simulations of Nanoindention on Polymers 430
18 2 1 Models and Simulation Methods 430
18 2 2 Load-displacement Responses 431
18 2 3 Hardness and Young’s Modulus 433
18 2 4 The Mechanism of Mechanical Behaviours and Properties 437
18 3 Simulations of Nanoindention on Crystals 441
18 3 1 Models and Simulation Methods 442
18 3 2 The Load-displacement Responses 444
18 3 3 Dislocation Nucleation 446
18 3 4 Mechanism of Dislocation Emission 449
18 4 Conclusions 455
Acknowledgments 456
References 456
19 Nanoindentation of Advanced Ceramics: Applications to Zr02
Materials 459
Joan Josep Roa Rovira, Emilio Jimenez Pique and MarcJ Anglada Gomila
19 1 Introduction 459
19 2 Indentation Mechanics 460
19 2 1 Deformation Mechanics 460
19 2 2 Elastic Contact 461
19 2 3 Elasto/plastic Contact 462
19 3 Fracture Toughness 462
19 4 Coatings 463
19 4 1 Coating Hardness 463
19 4 2 Coating Elastic Modulus 464
19 5 Issues for Reproducible Results 464
19 6 Applications of Nanoindentation to Zirconia 465
19 6 1 Hardness and Elastic Modulus 466
19 6 2 Stress-strain Curve and Phase Transformation 467
19 6 3 Plastic Deformation Mechanisms 468
19 6 4 Mechanical Properties of Damaged Surfaces 468
19 6 5 Relation Between Microstructure and Local Mechanical Properties by
Massive Nanoindentation Cartography 471
19 7 Conclusions 472
Acknowledgements 472
References 473
20 FEM Simulation of Nanoindentation 481
F Pöhl, W Theisen and S Huth
20 1 Introduction 481
20 2 Indentation of Isotropic Materials 482
20 3 Indentation of Thin Films 489
20 4 Indentation of a Hard Phase Embedded in Matrix 490
References 495
21 Investigations Regarding Plastic Flow Behaviour and Failure Analysis
on CrAIN Thin Hard Coatings 501
Jan Perne
21 1 Introduction 501
21 2 Description of the Method 501
21 2 1 Flow Curve Determination 502
21 211 Nanoindentation Step 502
21 212 Yield Strength Determination 502
21 213 Flow Curve Determination by Iterative Simulation 503
21 214 Determination of Strain Rate and Temperature Dependency 503
21 2 2 Failure Criterion Determination with Nano-scratch Analysis 503
21 3 Investigations into the CrAIN Coating System 504
21 3 1 Flow curve dependency on chemical composition and microstructure 504
21 3 2 Strain Rate Dependency of Different CrN-AIN Coating Systems 506
21 3 3 Failure criterion determination on a CrN/AIN nanolaminate 507
21 4 Concluding Remarks 509
References 511
22 Scale Invariant Mechanical Surface Optimization 513
Norbert Schwarzer
22 1 Introduction 513
22 1 1 Interatomic Potential Description of Mechanical Material Behavior 513
22 1 2 The Effective Indenter Concept and Its Extension to Layered Materials 514
xiv Contents
22 1 3 About Extensions of the Oliver and Pharr Method 514
22 131 Making the Classical Oliver and Pharr Method Fit for Time Dependent
Mechanical Behavior 515
22 1 4 Introduction to the Physical Scratch and/or Tribological Test and its
Analysis 515
22 1 5 Illustrative Hypothetical Example for Optimization Against Dust
Impact 515
22 1 6 About the Influence of Intrinsic Stresses 516
22 2 Theory 517
22 2 1 First Principle Based Interatomic Potential Description of Mechanical
Material Behavior 517
22 2 2 The Effective Indenter Concept 521
22 2 3 An Oliver and Pharr Method for Time Dependent Layered Materials 522
22 2 4 Theory for the Physical Scratch and/or Tribological Test 533
22 2 5 From Quasi-Static Experiments and Parameters to Dynamic Wear, Fretting
and Tribological Tests 534
22 2 6 Including Biaxial Intrinsic Stresses 537
22 3 The Procedure 540
22 4 Discussion by Means of Examples 544
22 5 Conclusions 555
Acknowledgements 555
Referencess 556
23 Modelling and Simulations of Nanoindentation In Single
Crystals 561
Qiang Liu, Murat Demiral, Anish Roy and Vadim V Silberschmidt
23 1 Introduction 561
23 2 Review of Indentation Modelling 564
23 3 Crystal Plasticity Modelling of Nanoindentation 565
23 3 1 Indentation of FCC Copper Single Crystal 567
23 3 2 Indentation of BCC Ti-64 569
23 3 3 Indentation of BCC Ti-15-3-3 571
23 4 Conclusions 573
References 574
24 Computer Simulation and Experimental Analysis of Nanoindentation
Technique 579
A Karimzadeh, M R Ayatollahi and A Rahimi
24 1 Introduction 579
24 2 Finite Element Simulation for Nanoindentation 580
24 3 Finite Element Modeling 580
24 3 1 Geometry 580
24 3 2 Material Characteristics 581
24 3 3 Boundary Condition 582
24 3 4 Interaction 582
24 3 5 Meshing 582
24 4 Verification of Finite Element Simulation 583
24 4 1 Nanoindentation Experiment on Al 1100 584
24 4 2 Comparison Between Simulation and Experimental Results for A11100 584
24 421 Load-displacement 584
24 422 Hardness 588
24 5 Molecular Dynamic Modeling for Nanoindentation 591
24 5 1 Simulation Procedure 592
24 6 Results of Molecular Dynamic Simulation 595
24 7 Conclusions 597
References 597
25 Atomistic Simulations of Adhesion, Indentation and Wear at
Nanoscale 601
Jun Zhong, Donald J Siegel, Louis G Hector, Jr and James B Adams
25 1 Introduction 601
25 2 Methodologies 604
25 2 1 Density Functional Theory 604
25 211 The Exchange-correlation Functional 605
25 212 Plane Waves and Supercell 606
25 2 2 Pseudopotential Approximation 606
25 2 3 Molecular Dynamics 607
25 231 Equations of Motion 607
25 232 Algorithms 608
25 233 Statistical Ensembles 608
25 234 Interatomic Potentials 608
25 235 Ab initio Molecular Dynamics 609
25 2 4 Some Commercial Software 611
25 241 TheVASP 611
25 242 The LAMMPS 611
25 3 Density Functional Study of Adhesion at the Metal/Ceramic
Interfaces 612
25 3 1 Calculations 612
25 3 2 Effect of Surface Energies in the Wsep 614
25 3 3 Conclusions 615
25 4 Molecular Dynamics Simulations of Nanoindentation 616
25 4 1 Empirical Modeling 616
25 411 Modeling Geometry and Simulation Procedures 617
25 412 Results and discussions 618
25 413 Conclusions 622
25 4 2 Ab initio Modeling 622
25 421 Modeling Geometry and Simulation Procedures 622
25 422 Results and Discussions 624
25 5 Molecular Dynamics Simulations of Adhesive Wear on the Al-substrate 628
25 5 1 Modeling Geometry and Simulation Procedures 629
25 5 2 Results and Discussions 630
25 521 One Common Wear Sequence 630
25 522 Thermal Analysis for the Wear Sequence 631
25 523 Wear Rate Analyses 632
xvi I Contents
25 6 Summary and Prospect 636
Acknowledgments 638
References 638
26 Multiscale Model for Nanoindentation in Polymer and Polymer
Nanocomposites 647
Rezwanur Rahman
26 1 Introduction 647
26 2 Modeling Scheme 648
26 2 1 Details of the MD Simulation 649
26 3 Nanoindentation Test 650
26 4 Theoretically and Experimentally Determined Result 651
26 5 Multiscale of Complex Heterogeneous Materials 651
26 5 1 Introduction to Peridynamics 652
26 5 2 Nonlocal Multiscale Modeling using Peridynamics: Linking Macro- to
Nano-scales 654
26 6 Multiscale Modeling for Nanoindentation in Epoxy: EPON 862 655
26 7 Unified Theory for Multiscale Modeling 658
26 8 Conclusion 658
References 659
|
any_adam_object | 1 |
author2 | Tiwari, Atul Natarajan, Sridhar |
author2_role | edt edt |
author2_variant | a t at s n sn |
author_GND | (DE-588)1081557192 |
author_facet | Tiwari, Atul Natarajan, Sridhar |
building | Verbundindex |
bvnumber | BV044653665 |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)1013179533 (DE-599)BVBBV044653665 |
dewey-full | 620.1/153 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/153 |
dewey-search | 620.1/153 |
dewey-sort | 3620.1 3153 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03805nam a2200493zc 4500</leader><controlfield tag="001">BV044653665</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240421 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171127s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119084518</subfield><subfield code="c">Online</subfield><subfield code="9">9781119084518</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119084501</subfield><subfield code="c">Online</subfield><subfield code="9">9781119084501</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119084501</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1013179533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044653665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/153</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied nanoindentation in advanced materials</subfield><subfield code="c">edited by Atul Tiwari and Sridhar Natarajan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, UK</subfield><subfield code="b">John Wiley & Sons</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 680 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: -A one stop solution for scholars and researchers to learn applied aspects of nanoindentation -Contains contributions from leading researchers in the field -Includes the analysis of key properties that can be studied using the nanoindentation technique -Covers recent innovations -Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference / bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials / Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials / Formability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tiwari, Atul</subfield><subfield code="0">(DE-588)1081557192</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Natarajan, Sridhar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119084495</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030051324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030051324</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UER_PDA_WIC_Kauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044653665 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:08:08Z |
institution | BVB |
isbn | 9781119084518 9781119084501 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030051324 |
oclc_num | 1013179533 |
open_access_boolean | |
owner | DE-861 DE-Aug4 DE-29 |
owner_facet | DE-861 DE-Aug4 DE-29 |
physical | 1 Online-Ressource (xxiv, 680 Seiten) |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FHA_PDA_WIC_Kauf ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC UER_PDA_WIC_Kauf_2024 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | John Wiley & Sons |
record_format | marc |
spellingShingle | Applied nanoindentation in advanced materials TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Materials / Testing Nanotechnology Nanostructured materials / Formability |
title | Applied nanoindentation in advanced materials |
title_auth | Applied nanoindentation in advanced materials |
title_exact_search | Applied nanoindentation in advanced materials |
title_full | Applied nanoindentation in advanced materials edited by Atul Tiwari and Sridhar Natarajan |
title_fullStr | Applied nanoindentation in advanced materials edited by Atul Tiwari and Sridhar Natarajan |
title_full_unstemmed | Applied nanoindentation in advanced materials edited by Atul Tiwari and Sridhar Natarajan |
title_short | Applied nanoindentation in advanced materials |
title_sort | applied nanoindentation in advanced materials |
topic | TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Materials / Testing Nanotechnology Nanostructured materials / Formability |
topic_facet | TECHNOLOGY & ENGINEERING / Engineering (General) / bisacsh TECHNOLOGY & ENGINEERING / Reference / bisacsh Materials / Testing Nanotechnology Nanostructured materials / Formability |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119084501 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030051324&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tiwariatul appliednanoindentationinadvancedmaterials AT natarajansridhar appliednanoindentationinadvancedmaterials |