Fundamentals of nonparametric Bayesian inference:
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge ; New York, NY ; Port Melbourne ; Delhi ; Singapore
Cambridge University Press
[2017]
|
Schriftenreihe: | Cambridge series in statistical and probabilistic mathematics
44 |
Schlagwörter: | |
Links: | https://doi.org/10.1017/9781139029834 https://doi.org/10.1017/9781139029834 https://doi.org/10.1017/9781139029834 https://doi.org/10.1017/9781139029834 https://doi.org/10.1017/9781139029834 |
Zusammenfassung: | Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 11 Aug 2017) |
Umfang: | 1 online resource (xxiv, 646 Seiten) |
ISBN: | 9781139029834 |
DOI: | 10.1017/9781139029834 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV044508089 | ||
003 | DE-604 | ||
005 | 20230824 | ||
007 | cr|uuu---uuuuu | ||
008 | 170920s2017 xx o|||| 00||| eng d | ||
020 | |a 9781139029834 |9 978-1-13902983-4 | ||
024 | 7 | |a 10.1017/9781139029834 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139029834 | ||
035 | |a (OCoLC)1005729414 | ||
035 | |a (DE-599)BVBBV044508089 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 |a DE-11 |a DE-19 | ||
050 | 0 | |a QA278.8 | |
082 | 0 | |a 519.5/42 | |
082 | 0 | |a 519.542 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a MAT 626f |2 stub | ||
100 | 1 | |a Ghosal, Subhashis |e Verfasser |0 (DE-588)1132587476 |4 aut | |
245 | 1 | 0 | |a Fundamentals of nonparametric Bayesian inference |c Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University |
264 | 1 | |a Cambridge ; New York, NY ; Port Melbourne ; Delhi ; Singapore |b Cambridge University Press |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a 1 online resource (xxiv, 646 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge series in statistical and probabilistic mathematics |v 44 | |
500 | |a Title from publisher's bibliographic system (viewed on 11 Aug 2017) | ||
520 | |a Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics | ||
650 | 4 | |a Nonparametric statistics | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 0 | 7 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |D s |
689 | 0 | 1 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vaart, Aad W. van der |d 1959- |e Verfasser |0 (DE-588)114474680 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-0-521-87826-5 |w (DE-604)BV044364280 |
830 | 0 | |a Cambridge series in statistical and probabilistic mathematics |v 44 |w (DE-604)BV041460443 |9 44 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781139029834 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029907952 | |
966 | e | |u https://doi.org/10.1017/9781139029834 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139029834 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139029834 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO_Kauf20 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781139029834 |l DE-19 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818983537216323584 |
---|---|
any_adam_object | |
author | Ghosal, Subhashis Vaart, Aad W. van der 1959- |
author_GND | (DE-588)1132587476 (DE-588)114474680 |
author_facet | Ghosal, Subhashis Vaart, Aad W. van der 1959- |
author_role | aut aut |
author_sort | Ghosal, Subhashis |
author_variant | s g sg a w v d v awvd awvdv |
building | Verbundindex |
bvnumber | BV044508089 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278.8 |
callnumber-search | QA278.8 |
callnumber-sort | QA 3278.8 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 |
classification_tum | MAT 626f |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139029834 (OCoLC)1005729414 (DE-599)BVBBV044508089 |
dewey-full | 519.5/42 519.542 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 519.542 |
dewey-search | 519.5/42 519.542 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/9781139029834 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03779nam a2200589 cb4500</leader><controlfield tag="001">BV044508089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230824 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170920s2017 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139029834</subfield><subfield code="9">978-1-13902983-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781139029834</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139029834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005729414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044508089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.542</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 626f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghosal, Subhashis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1132587476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of nonparametric Bayesian inference</subfield><subfield code="c">Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY ; Port Melbourne ; Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiv, 646 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">44</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 11 Aug 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonparametric statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaart, Aad W. van der</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114474680</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-0-521-87826-5</subfield><subfield code="w">(DE-604)BV044364280</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">44</subfield><subfield code="w">(DE-604)BV041460443</subfield><subfield code="9">44</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781139029834</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029907952</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139029834</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139029834</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139029834</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO_Kauf20</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781139029834</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044508089 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T18:04:41Z |
institution | BVB |
isbn | 9781139029834 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029907952 |
oclc_num | 1005729414 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG DE-11 DE-19 DE-BY-UBM |
physical | 1 online resource (xxiv, 646 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO_Kauf20 ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge series in statistical and probabilistic mathematics |
series2 | Cambridge series in statistical and probabilistic mathematics |
spelling | Ghosal, Subhashis Verfasser (DE-588)1132587476 aut Fundamentals of nonparametric Bayesian inference Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University Cambridge ; New York, NY ; Port Melbourne ; Delhi ; Singapore Cambridge University Press [2017] © 2017 1 online resource (xxiv, 646 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge series in statistical and probabilistic mathematics 44 Title from publisher's bibliographic system (viewed on 11 Aug 2017) Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics Nonparametric statistics Bayesian statistical decision theory Bayes-Inferenz (DE-588)4648118-7 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Bayes-Inferenz (DE-588)4648118-7 s Statistische Schlussweise (DE-588)4182963-3 s 1\p DE-604 Vaart, Aad W. van der 1959- Verfasser (DE-588)114474680 aut Erscheint auch als Druck-Ausgabe, hardback 978-0-521-87826-5 (DE-604)BV044364280 Cambridge series in statistical and probabilistic mathematics 44 (DE-604)BV041460443 44 https://doi.org/10.1017/9781139029834 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ghosal, Subhashis Vaart, Aad W. van der 1959- Fundamentals of nonparametric Bayesian inference Cambridge series in statistical and probabilistic mathematics Nonparametric statistics Bayesian statistical decision theory Bayes-Inferenz (DE-588)4648118-7 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
subject_GND | (DE-588)4648118-7 (DE-588)4182963-3 |
title | Fundamentals of nonparametric Bayesian inference |
title_auth | Fundamentals of nonparametric Bayesian inference |
title_exact_search | Fundamentals of nonparametric Bayesian inference |
title_full | Fundamentals of nonparametric Bayesian inference Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University |
title_fullStr | Fundamentals of nonparametric Bayesian inference Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University |
title_full_unstemmed | Fundamentals of nonparametric Bayesian inference Subhashis Ghosal, North Carolina State University, Aad van der Vaart, Leiden University |
title_short | Fundamentals of nonparametric Bayesian inference |
title_sort | fundamentals of nonparametric bayesian inference |
topic | Nonparametric statistics Bayesian statistical decision theory Bayes-Inferenz (DE-588)4648118-7 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
topic_facet | Nonparametric statistics Bayesian statistical decision theory Bayes-Inferenz Statistische Schlussweise |
url | https://doi.org/10.1017/9781139029834 |
volume_link | (DE-604)BV041460443 |
work_keys_str_mv | AT ghosalsubhashis fundamentalsofnonparametricbayesianinference AT vaartaadwvander fundamentalsofnonparametricbayesianinference |