Data mining: practical machine learning tools and techniques
Gespeichert in:
Beteiligte Personen: | , , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Amsterdam
Morgan Kaufmann
[2017]
|
Ausgabe: | Fourth edition |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
Abstract: | "Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches." -- back of cover |
Umfang: | xxxii, 621 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9780128042915 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043998549 | ||
003 | DE-604 | ||
005 | 20240129 | ||
007 | t| | ||
008 | 170116s2017 xx a||| |||| 00||| eng d | ||
020 | |a 9780128042915 |9 978-0-12-804291-5 | ||
035 | |a (OCoLC)971021791 | ||
035 | |a (DE-599)BVBBV043998549 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29T |a DE-858 |a DE-862 |a DE-523 |a DE-573 |a DE-B768 |a DE-91G |a DE-91 |a DE-739 |a DE-92 |a DE-898 |a DE-1046 |a DE-83 |a DE-20 |a DE-355 |a DE-703 | ||
050 | 0 | |a QA76.9.D343 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a MR 2200 |0 (DE-625)123489: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a CM 4400 |0 (DE-625)18955: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a DAT 450f |2 stub | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Witten, Ian H. |d 1947- |e Verfasser |0 (DE-588)138440166 |4 aut | |
245 | 1 | 0 | |a Data mining |b practical machine learning tools and techniques |c Ian H. Witten (University of Waikato, Hamilton, New Zealand), Eibe Frank (University of Waikato, Hamilton, New Zealand), Mark A. Hall (University of Waikato, Hamilton, New Zealand), Christopher J. Pal (Polytechnique Montréal, Montreal, Quebec, Canada) |
250 | |a Fourth edition | ||
264 | 1 | |a Amsterdam |b Morgan Kaufmann |c [2017] | |
300 | |a xxxii, 621 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a "Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches." -- back of cover | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Java |g Programmiersprache |0 (DE-588)4401313-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weka 3 |0 (DE-588)1126597503 |2 gnd |9 rswk-swf |
651 | 7 | |a Java |0 (DE-588)4028527-3 |2 gnd |9 rswk-swf | |
653 | 0 | |a Data mining | |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Weka 3 |0 (DE-588)1126597503 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 1 | |a Java |0 (DE-588)4028527-3 |D g |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 2 | 1 | |a Java |g Programmiersprache |0 (DE-588)4401313-9 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Frank, Eibe |e Verfasser |0 (DE-588)122539044 |4 aut | |
700 | 1 | |a Hall, Mark A. |e Verfasser |0 (DE-588)1012537048 |4 aut | |
700 | 1 | |a Pal, Christopher J. |e Verfasser |0 (DE-588)1261063902 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-12-804357-8 |w (DE-604)BV043969890 |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
942 | 1 | 1 | |c 025.04 |e 22/bsb |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029406557 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0003 DAT 450f 2011 L 1330(4) 0303 DAT 450f 2005 L 741(4) |
---|---|
DE-BY-TUM_katkey | 2295846 |
DE-BY-TUM_location | 00 03 |
DE-BY-TUM_media_number | 040008846584 040008846482 040008846506 040008846539 040008846528 040008846517 040008846573 040008846540 040008846551 040008846493 040008630357 040008630380 040008630368 040008648471 040008573722 040008573733 040008573777 040008573711 040008846562 040008630379 040008573788 040008150754 040008150787 040008150743 040008150765 040008150776 040008150721 040008150798 040008150801 040008150732 040008150823 040008150812 |
_version_ | 1821934242023604224 |
adam_text | Contents
List of Figures........................................................... xv
List of Tables.............................................................xxi
Preface..................................................................xxiii
PART I INTRODUCTION TO DATA MINING
CHAPTER t What’s it ail about?............................................3
1.1 Data Mining and Machine Learning...........................4
Describing Structural Patterns.............................6
Machine Learning...........................................7
Data Mining................................................9
1.2 Simple Examples: The Weather Problem and Others...........9
The Weather Problem.......................................10
Contact Lenses: An Idealized Problem......................12
Irises: A Classic Numeric Dataset.........................14
CPU Performance: Introducing Numeric Prediction...........16
Labor Negotiations: A More Realistic Example..............16
Soybean Classification: A Classic Machine Learning
Success...............................................19
1.3 Fielded Applications.....................................21
Web Mining.............................................. 21
Decisions Involving Judgment.......................... 22
Screening Images..........................................23
Load Forecasting..........................................24
Diagnosis.................................................25
Marketing and Sales.......................................26
Other Applications........................................27
1.4 The Data Mining Process..................................28
1.5 Machine Learning and Statistics..........................30
1.6 Generalization as Search.................................31
Enumerating the Concept Space.............................32
Bias......................................................33
1.7 Data Mining and Ethics...................................35
Reidentification..........................................36
Using Personal Information................................37
Wider Issues..............................................38
1.8 Further Reading and Bibliographic Notes..................38
CHAPTER 2 Input: concepts, instances, attributes...........................43
2.1 What’s a Concept?...........................................44
2.2 What’s in an Example?......................................46
Relations...................................................47
Other Example Types.........................................51
2.3 What’s in an Attribute?....................................53
2.4 Preparing the Input........................................56
Gathering the Data Together.................................56
ARFF Format.................................................57
Sparse Data.................................................60
Attribute Types.............................................61
Missing Values..............................................62
Inaccurate Values...........................................63
Unbalanced Data.............................................64
Getting to Know Your Data...................................65
2.5 Further Reading and Bibliographic Notes....................65
CHAPTER 3 Output: knowledge representation.................................67
3.1 Tables......................................................68
3.2 Linear Models..............................................68
3.3 Trees.....................................................70
3.4 Rules...,,.................................................75
Classification Rules........................................75
Association Rules...........................................79
Rules With Exceptions.......................................80
More Expressive Rules.......................................82
3.5 Instance-Based Representation..............................84
3.6 Clusters...................................................87
3.7 Further Reading and Bibliographic Notes....................88
CHAPTER 4 Algorithms: the basic methods....................................91
4.1 Inferring Rudimentary Rules................................93
Missing Values and Numeric Attributes.......................94
4.2 Simple Probabilistic Modeling..............................96
Missing Values and Numeric Attributes......................100
Naive Bayes for Document Classification....................103
Remarks....................................................105
4.3 Divide-and-Conquer: Constructing Decision Trees...........105
Calculating Information....................................108
Highly Branching Attributes................................110
4.4 Covering Algorithms: Constructing Rules....................113
Rules Versus Trees......................................114
A Simple Covering Algorithm...............................115
Rules Versus Decision Lists...............................119
4.5 Mining Association Rules...................................120
Item Sets.................................................120
Association Rules.........................................122
Generating Rules Efficiently..............................124
4.6 Linear Models..............................................128
Numeric Prediction: Linear Regression.....................128
Linear Classification: Logistic Regression................129
Linear Classification Using the Perceptron................131
Linear Classification Using Winnow........................133
4.7 Instance-Based Learning....................................135
The Distance Function.....................................135
Finding Nearest Neighbors Efficiently.....................136
Remarks...................................................141
4.8 Clustering.................................................141
Iterative Distance-Based Clustering.......................142
Faster Distance Calculations..............................144
Choosing the Number of Clusters...........................146
Hierarchical Clustering...................................147
Example of Hierarchical Clustering........................148
Incremental Clustering....................................150
Category Utility..........................................154
Remarks...................................................156
4.9 Multi-instance Learning....................................156
Aggregating the Input.....................................157
Aggregating the Output....................................157
4.10 Further Reading and Bibliographic Notes...................158
4.11 WEKA Implementations......................................160
CHAPTER 5 Credibility: evaluating what’s been learned....................161
5.1 Training and Testing..................................... 163
5.2 Predicting Performance.....................................165
5.3 Cross-Validation...........................................167
5.4 Other Estimates............................................169
Leave-One-Out...............................................169
The Bootstrap...............................................169
5.5 Hyperparameter Selection...................................171
5.6 Comparing Data Mining Schemes.............................172
5.7 Predicting Probabilities..................................176
Quadratic Loss Function...................................177
Informational Loss Function...............................178
Remarks...................................................179
5.8 Counting the Cost.........................................179
Cost-Sensitive Classification.............................182
Cost-Sensitive Learning...................................183
Lift Charts...............................................183
ROC Curves................................................186
Recall-Precision Curves...................................190
Remarks...................................................190
Cost Curves...............................................192
5.9 Evaluating Numeric Prediction.............................194
5.10 The MDL Principle........................................197
5.11 Applying the MDL Principle to Clustering.................200
5.12 Using a Validation Set for Model Selection...............201
5.13 Further Reading and Bibliographic Notes..................202
PART II MORE ADVANCED MACHINE LEARNING SCHEMES
CHAPTER 6 Trees and rules..............................................209
6.1 Decision Trees.........................................210
Numeric Attributes......................................210
Missing Values..........................................212
Pruning.................................................213
Estimating Error Rates..................................215
Complexity of Decision Tree Induction...................217
From Trees to Rules.....................................219
C4.5: Choices and Options...............................219
Cost-Complexity Pruning.................................220
Discussion..............................................221
6.2 Classification Rules...................................221
Criteria for Choosing Tests.............................222
Missing Values, Numeric Attributes......................223
Generating Good Rules...................................224
Using Global Optimization...............................226
Obtaining Rules From Partial Decision Trees.............227
Rules With Exceptions................................. 231
Discussion..............................................233
6.3 Association Rules.......................................234
Building a Frequent Pattern Tree.........................235
Finding Large Item Sets..................................240
Discussion...............................................241
6.4 WEKA Implementations....................................242
CHAPTER 7 Extending instance-based and linear models....................243
7.1 Instance-Based Learning.................................244
Reducing the Number of Exemplars.........................245
Pruning Noisy Exemplars..................................245
Weighting Attributes.....................................246
Generalizing Exemplars...................................247
Distance Functions for Generalized Exemplars.............248
Generalized Distance Functions...........................250
Discussion...............................................250
7.2 Extending Linear Models.................................252
The Maximum Margin Hyperplane............................253
Nonlinear Class Boundaries...............................254
Support Vector Regression................................256
Kernel Ridge Regression..................................258
The Kernel Perceptron....................................260
Multilayer Perceptrons...................................261
Radial Basis Function Networks...........................270
Stochastic Gradient Descent..............................270
Discussion...............................................272
7.3 Numeric Prediction With Local Linear Models.............273
Model Trees..............................................274
Building the Tree........................................275
Pruning the Tree.........................................275
Nominal Attributes.......................................276
Missing Values...........................................276
Pseudocode for Model Tree Induction......................277
Rules From Model Trees...................................281
Locally Weighted Linear Regression.......................281
Discussion...............................................283
7.4 WEKA Implementations....................................284
CHAPTER 8 Data transformations..........................................285
8.1 Attribute Selection.....................................288
Scheme-Independent Selection.............................289
Searching the Attribute Space............................292
Scheme-Specific Selection................................293
8.2 Discretizing Numeric Attributes............................296
Unsupervised Discretization................................297
Entropy-Based Discretization...............................298
Other Discretization Methods...............................301
Entropy-Based Versus Error-Based Discretization............302
Converting Discrete to Numeric Attributes..................303
8.3 Projections................................................304
Principal Component Analysis...............................305
Random Projections.........................................307
Partial Least Squares Regression...........................307
Independent Component Analysis.............................309
Linear Discriminant Analysis...............................310
Quadratic Discriminant Analysis............................310
Fisher’s Linear Discriminant Analysis......................311
Text to Attribute Vectors..................................313
Time Series................................................314
8.4 Sampling...................................................315
Reservoir Sampling....................................... 315
8.5 Cleansing................................................ 316
Improving Decision Trees...................................316
Robust Regression..........................................317
Detecting Anomalies........................................318
One-Class Learning.........................................319
Outlier Detection..........................................320
Generating Artificial Data.................................321
8.6 Transforming Multiple Classes to Binary Ones...............322
Simple Methods.............................................323
Error-Correcting Output Codes..............................324
Ensembles of Nested Dichotomies............................326
8.7 Calibrating Class Probabilities............................328
8.8 Further Reading and Bibliographic Notes....................331
8.9 WEKA Implementations.......................................334
CHAPTER 9 Probabilistic methods............................................335
9.1 Foundations................................................336
Maximum Likelihood Estimation............................ 338
Maximum a Posteriori Parameter Estimation..................339
9.2 Bayesian Networks..........................................339
Making Predictions.........................................340
Learning Bayesian Networks.................................344
Specific Algorithms........................................347
Data Structures for Fast Learning..........................349
9.3 Clustering and Probability Density Estimation.............352
The Expectation Maximization Algorithm for a Mixture
of Gaussians...........................................353
Extending the Mixture Model................................356
Clustering Using Prior Distributions.......................358
Clustering With Correlated Attributes......................359
Kernel Density Estimation..................................361
Comparing Parametric, Semiparametric and Nonparametric
Density Models for Classification......................362
9.4 Hidden Variable Models....................................363
Expected Log-Likelihoods and Expected Gradients............364
The Expectation Maximization Algorithm.....................365
Applying the Expectation Maximization Algorithm
to Bayesian Networks...................................366
9.5 Bayesian Estimation and Prediction........................367
Probabilistic Inference Methods............................368
9.6 Graphical Models and Factor Graphs........................370
Graphical Models and Plate Notation........................371
Probabilistic Principal Component Analysis.................372
Latent Semantic Analysis...................................376
Using Principal Component Analysis for Dimensionality
Reduction..............................................377
Probabilistic LSA..........................................378
Latent Dirichlet Allocation................................379
Factor Graphs............................................ 382
Markov Random Fields.......................................385
Computing Using the Sum-Product and Max-Product
Algorithms.............................................386
9.7 Conditional Probability Models............................392
Linear and Polynomial Regression as Probability
Models.................................................392
Using Priors on Parameters.................................393
Multiclass Logistic Regression.............................396
Gradient Descent and Second-Order Methods..................400
Generalized Linear Models..................................400
Making Predictions for Ordered Classes.....................402
Conditional Probabilistic Models Using Kernels.............402
9.8 Sequential and Temporal Models..........................403
Markov Models and iV-gram Methods.......................403
Hidden Markov Models....................................404
Conditional Random Fields...............................406
9.9 Further Reading and Bibliographic Notes.................410
Software Packages and Implementations...................414
9.10 WEKA Implementations...................................416
CHAPTER 10 Deep learning......................................... 417
10.1 Deep Feedforward Networks...............................420
The MNIST Evaluation....................................421
Losses and Regularization...............................422
Deep Layered Network Architecture.......................423
Activation Functions....................................424
Backpropagation Revisited...............................426
Computation Graphs and Complex Network Structures......429
Checking Backpropagation Implementations................430
10.2 Training and Evaluating Deep Networks...................431
Early Stopping..........................................431
Validation, Cross-Validation, and Hyperparameter Tuning...432
Mini-Batch-Based Stochastic Gradient Descent............433
Pseudocode for Mini-Batch Based Stochastic Gradient
Descent...............................................434
Learning Rates and Schedules............................434
Regularization With Priors on Parameters................435
Dropout.................................................436
Batch Normalization.....................................436
Parameter Initialization................................436
Unsupervised Pretraining................................437
Data Augmentation and Synthetic Transformations.........437
10.3 Convolutional Neural Networks...........................437
The ImageNet Evaluation and Very Deep Convolutional
Networks..............................................438
From Image Filtering to Leamable Convolutional Layers..439
Convolutional Layers and Gradients......................443
Pooling and Subsampling Layers and Gradients............444
Implementation..........................................445
10.4 Autoencoders............................................445
Pretraining Deep Autoencoders With RBMs.................448
Denoising Autoencoders and Layerwise Training...........448
Combining Reconstructive and Discriminative Learning...449
10.5 Stochastic Deep Networks..............................449
Boltzmann Machines.....................................449
Restricted Boltzmann Machines..........................451
Contrastive Divergence.................................452
Categorical and Continuous Variables...................452
Deep Boltzmann Machines................................453
Deep Belief Networks...................................455
10.6 Recurrent Neural Networks.............................456
Exploding and Vanishing Gradients......................457
Other Recurrent Network Architectures..................459
10.7 Further Reading and Bibliographic Notes...............461
10.8 Deep Learning Software and Network Implementations...464
Theano.................................................464
Tensor Flow............................................464
Torch..................................................465
Computational Network Toolkit..........................465
Caffe..................................................465
Deepleaming4j..........................................465
Other Packages: Lasagne, Keras, and cuDNN..............465
10.9 WEKA Implementations..................................466
CHAPTER 11 Beyond supervised and unsupervised learning................467
11.1 Semisupervised Learning................................468
Clustering for Classification..........................468
Cotraining.............................................470
EM and Cotraining......................................471
Neural Network Approaches..............................471
11.2 Multi-instance Learning...............................472
Converting to Single-Instance Learning.................472
Upgrading Learning Algorithms..........................475
Dedicated Multi-instance Methods.......................475
11.3 Further Reading and Bibliographic Notes...............477
11.4 WEKA Implementations..................................478
CHAPTER 12 Ensemble learning...........................................479
12.1 Combining Multiple Models..............................480
12.2 Bagging...............................................481
Bias-Variance Decomposition............................482
Bagging With Costs.....................................483
12.3 Randomization.........................................484
Randomization Versus Bagging...........................485
Rotation Forests.......................................486
12.4 Boosting................................................486
AdaBoost................................................487
The Power of Boosting...................................489
12.5 Additive Regression.....................................490
Numeric Prediction......................................491
Additive Logistic Regression............................492
12.6 Interpretable Ensembles.................................493
Option Trees............................................494
Logistic Model Trees....................................496
12.7 Stacking................................................497
12.8 Further Reading and Bibliographic Notes.................499
12.9 WEKA Implementations....................................501
CHAPTER 13 Moving on: applications and beyond......................503
13.1 Applying Machine Learning...............................504
13.2 Learning From Massive Datasets..........................506
13.3 Data Stream Learning....................................509
13.4 Incorporating Domain Knowledge..........................512
13.5 Text Mining.............................................515
Document Classification and Clustering.................516
Information Extraction.................................517
Natural Language Processing............................518
13.6 Web Mining..............................................519
Wrapper Induction......................................519
Page Rank..............................................520
13.7 Images and Speech.......................................522
Images.................................................523
Speech.................................................524
13.8 Adversarial Situations..................................524
13.9 Ubiquitous Data Mining..................................527
13.10 Further Reading and Bibliographic Notes................529
13.11 WEKA Implementations...................................532
Appendix A: Theoretical foundations......................................533
Appendix B: The WEKA workbench...........................................553
References...............................................................573
Index....................................................................601
Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning
concepts as well as practical advice on applying the tools and techniques in real-world data mining situations. This
highly anticipated fourth edition of the most acclaimed work on data mining and machine learning will teach you
everything you need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the
algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last
edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book
is a new version of the popular WEKA machine learning software from the University of Waikato. Witten, Frank,
Hall, and Pal include the techniques of today as well as methods at the leading edge of contemporary research.
Key Features Include:
• A thorough grounding in machine learning concepts as well as practical advice on applying the tools
and techniques to your data mining projects
• Concrete tips and techniques for performance improvement that work by transforming the input or
output in machine learning methods
• Downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for
data mining tasks in an easy-to-use interactive interface.
• Accompanying open-access online courses that introduce practical application of the material in the
book.
|
any_adam_object | 1 |
author | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. Pal, Christopher J. |
author_GND | (DE-588)138440166 (DE-588)122539044 (DE-588)1012537048 (DE-588)1261063902 |
author_facet | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. Pal, Christopher J. |
author_role | aut aut aut aut |
author_sort | Witten, Ian H. 1947- |
author_variant | i h w ih ihw e f ef m a h ma mah c j p cj cjp |
building | Verbundindex |
bvnumber | BV043998549 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 530 QH 500 MR 2200 ST 270 ST 300 CM 4400 SK 850 |
classification_tum | DAT 450f DAT 708f |
ctrlnum | (OCoLC)971021791 (DE-599)BVBBV043998549 |
discipline | Informatik Soziologie Psychologie Mathematik Wirtschaftswissenschaften |
edition | Fourth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04011nam a2200697 c 4500</leader><controlfield tag="001">BV043998549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240129 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170116s2017 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128042915</subfield><subfield code="9">978-0-12-804291-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)971021791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043998549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2200</subfield><subfield code="0">(DE-625)123489:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4400</subfield><subfield code="0">(DE-625)18955:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Witten, Ian H.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138440166</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining</subfield><subfield code="b">practical machine learning tools and techniques</subfield><subfield code="c">Ian H. Witten (University of Waikato, Hamilton, New Zealand), Eibe Frank (University of Waikato, Hamilton, New Zealand), Mark A. Hall (University of Waikato, Hamilton, New Zealand), Christopher J. Pal (Polytechnique Montréal, Montreal, Quebec, Canada)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxii, 621 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches." -- back of cover</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Java</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4401313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weka 3</subfield><subfield code="0">(DE-588)1126597503</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Java</subfield><subfield code="0">(DE-588)4028527-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Weka 3</subfield><subfield code="0">(DE-588)1126597503</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Java</subfield><subfield code="0">(DE-588)4028527-3</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Java</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4401313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frank, Eibe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122539044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Mark A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1012537048</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Christopher J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1261063902</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-12-804357-8</subfield><subfield code="w">(DE-604)BV043969890</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">025.04</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029406557</subfield></datafield></record></collection> |
geographic | Java (DE-588)4028527-3 gnd |
geographic_facet | Java |
id | DE-604.BV043998549 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:50:51Z |
institution | BVB |
isbn | 9780128042915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029406557 |
oclc_num | 971021791 |
open_access_boolean | |
owner | DE-12 DE-29T DE-858 DE-862 DE-BY-FWS DE-523 DE-573 DE-B768 DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-739 DE-92 DE-898 DE-BY-UBR DE-1046 DE-83 DE-20 DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-12 DE-29T DE-858 DE-862 DE-BY-FWS DE-523 DE-573 DE-B768 DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-739 DE-92 DE-898 DE-BY-UBR DE-1046 DE-83 DE-20 DE-355 DE-BY-UBR DE-703 |
physical | xxxii, 621 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Morgan Kaufmann |
record_format | marc |
spellingShingle | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. Pal, Christopher J. Data mining practical machine learning tools and techniques Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Java Programmiersprache (DE-588)4401313-9 gnd Weka 3 (DE-588)1126597503 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4193754-5 (DE-588)4401313-9 (DE-588)1126597503 (DE-588)4028527-3 |
title | Data mining practical machine learning tools and techniques |
title_auth | Data mining practical machine learning tools and techniques |
title_exact_search | Data mining practical machine learning tools and techniques |
title_full | Data mining practical machine learning tools and techniques Ian H. Witten (University of Waikato, Hamilton, New Zealand), Eibe Frank (University of Waikato, Hamilton, New Zealand), Mark A. Hall (University of Waikato, Hamilton, New Zealand), Christopher J. Pal (Polytechnique Montréal, Montreal, Quebec, Canada) |
title_fullStr | Data mining practical machine learning tools and techniques Ian H. Witten (University of Waikato, Hamilton, New Zealand), Eibe Frank (University of Waikato, Hamilton, New Zealand), Mark A. Hall (University of Waikato, Hamilton, New Zealand), Christopher J. Pal (Polytechnique Montréal, Montreal, Quebec, Canada) |
title_full_unstemmed | Data mining practical machine learning tools and techniques Ian H. Witten (University of Waikato, Hamilton, New Zealand), Eibe Frank (University of Waikato, Hamilton, New Zealand), Mark A. Hall (University of Waikato, Hamilton, New Zealand), Christopher J. Pal (Polytechnique Montréal, Montreal, Quebec, Canada) |
title_short | Data mining |
title_sort | data mining practical machine learning tools and techniques |
title_sub | practical machine learning tools and techniques |
topic | Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Java Programmiersprache (DE-588)4401313-9 gnd Weka 3 (DE-588)1126597503 gnd |
topic_facet | Data Mining Maschinelles Lernen Java Programmiersprache Weka 3 Java |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029406557&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wittenianh dataminingpracticalmachinelearningtoolsandtechniques AT frankeibe dataminingpracticalmachinelearningtoolsandtechniques AT hallmarka dataminingpracticalmachinelearningtoolsandtechniques AT palchristopherj dataminingpracticalmachinelearningtoolsandtechniques |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Stammgelände, Lehrbuchsammlung
Signatur: |
0003 DAT 450f 2011 L 1330(4) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 2 | Ausleihbar Am Standort |
Exemplar 3 | Ausleihbar Am Standort |
Exemplar 4 | Ausleihbar Am Standort |
Exemplar 5 | Ausleihbar Am Standort |
Exemplar 6 | Ausleihbar Am Standort |
Exemplar 7 | Ausleihbar Am Standort |
Exemplar 8 | Ausleihbar Am Standort |
Exemplar 9 | Ausleihbar Am Standort |
Exemplar 10 | Ausleihbar Am Standort |
Exemplar 11 | Ausleihbar Am Standort |
Exemplar 12 | Ausleihbar Am Standort |
Exemplar 13 | Ausleihbar Am Standort |
Exemplar 14 | Ausleihbar Am Standort |
Exemplar 15 | Ausleihbar Am Standort |
Exemplar 16 | Ausleihbar Am Standort |
Exemplar 17 | Ausleihbar Am Standort |
Exemplar 18 | Ausleihbar Am Standort |
Exemplar 19 | Ausleihbar Ausgeliehen – Rückgabe bis: 18.03.2025 |
Exemplar 20 | Ausleihbar Ausgeliehen – Rückgabe bis: 07.04.2025 |
Exemplar 21 | Ausleihbar Ausgeliehen – Rückgabe bis: 17.03.2025 |
Teilbibliothek Chemie, Lehrbuchsammlung
Signatur: |
0303 DAT 450f 2005 L 741(4) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Ausgeliehen – Rückgabe bis: 24.03.2025 |
Exemplar 2 | Ausleihbar Ausgeliehen – Rückgabe bis: 01.04.2025 |
Exemplar 3 | Ausleihbar Am Standort |
Exemplar 4 | Ausleihbar Am Standort |
Exemplar 5 | Ausleihbar Am Standort |
Exemplar 6 | Ausleihbar Am Standort |
Exemplar 7 | Ausleihbar Am Standort |
Exemplar 8 | Ausleihbar Am Standort |
Exemplar 9 | Ausleihbar Am Standort |
Exemplar 10 | Ausleihbar Am Standort |
Exemplar 11 | Ausleihbar Am Standort |