Probabilistic reasoning in multiagent systems: a graphical models approach
This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of res...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/CBO9780511546938 https://doi.org/10.1017/CBO9780511546938 https://doi.org/10.1017/CBO9780511546938 |
Zusammenfassung: | This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Umfang: | 1 online resource (xii, 294 pages) |
ISBN: | 9780511546938 |
DOI: | 10.1017/CBO9780511546938 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945734 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 xx o|||| 00||| eng d | ||
020 | |a 9780511546938 |c Online |9 978-0-511-54693-8 | ||
024 | 7 | |a 10.1017/CBO9780511546938 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546938 | ||
035 | |a (OCoLC)704478149 | ||
035 | |a (DE-599)BVBBV043945734 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 006.3 |2 21 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Xiang, Yang |d 1954- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probabilistic reasoning in multiagent systems |b a graphical models approach |c Yang Xiang |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xii, 294 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Intelligent Agents |t Reasoning about the Environment |t Why Uncertain Reasoning? |t Multiagent Systems |t Cooperative Multiagent Probabilistic Reasoning |t Application Domains |t Bayesian Networks |t Basics on Bayesian Probability Theory |t Belief Updating Using JPD |t Graphs |t Local Computation and Message Passing |t Message Passing over Multiple Networks |t Approximation with Massive Message Passing |t Belief Updating and Cluster Graphs |t Conventions for Message Passing in Cluster Graphs |t Relation with [lambda] |g i] Message Passing |t Message Passing in Nondegenerate Cycles |t Message Passing in Degenerate Cycles |t Junction Trees |t Junction Tree Representation |t Graphical Separation |t Sufficient Message and Independence |t Encoding Independence in Graphs |t Junction Trees and Chordal Graphs |t Triangulation by Elimination |t Junction Trees as I-maps |t Junction Tree Construction |t Belief Updating with Junction Trees |t Algebraic Properties of Potentials |t Potential Assignment in Junction Trees |t Passing Belief over Separators |t Passing Belief through a Junction Tree |t Processing Observations |t Multiply Sectioned Bayesian Networks |t The Task of Distributed Uncertain Reasoning |t Organization of Agents during Communication |t Agent Interface |t Multiagent Dependence Structure |t Linked Junction Forests |t Multiagent Distributed Compilation of MSBNs |t Multiagent Moralization of MSDAG |t Effective Communication Using Linkage Trees |t Linkage Trees as I-maps |t Multiagent Triangulation |
520 | |a This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Distributed artificial intelligence | |
650 | 4 | |a Bayesian statistical decision theory / Data processing | |
650 | 4 | |a Multiagent systems | |
650 | 0 | 7 | |a Mehragentensystem |0 (DE-588)4389058-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verteilte künstliche Intelligenz |0 (DE-588)4281805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mehragentensystem |0 (DE-588)4389058-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Verteilte künstliche Intelligenz |0 (DE-588)4281805-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-15390-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81308-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546938 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029354705 | |
966 | e | |u https://doi.org/10.1017/CBO9780511546938 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546938 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982577636114432 |
---|---|
any_adam_object | |
author | Xiang, Yang 1954- |
author_facet | Xiang, Yang 1954- |
author_role | aut |
author_sort | Xiang, Yang 1954- |
author_variant | y x yx |
building | Verbundindex |
bvnumber | BV043945734 |
classification_rvk | SK 830 |
collection | ZDB-20-CBO |
contents | Intelligent Agents Reasoning about the Environment Why Uncertain Reasoning? Multiagent Systems Cooperative Multiagent Probabilistic Reasoning Application Domains Bayesian Networks Basics on Bayesian Probability Theory Belief Updating Using JPD Graphs Local Computation and Message Passing Message Passing over Multiple Networks Approximation with Massive Message Passing Belief Updating and Cluster Graphs Conventions for Message Passing in Cluster Graphs Relation with [lambda] Message Passing in Nondegenerate Cycles Message Passing in Degenerate Cycles Junction Trees Junction Tree Representation Graphical Separation Sufficient Message and Independence Encoding Independence in Graphs Junction Trees and Chordal Graphs Triangulation by Elimination Junction Trees as I-maps Junction Tree Construction Belief Updating with Junction Trees Algebraic Properties of Potentials Potential Assignment in Junction Trees Passing Belief over Separators Passing Belief through a Junction Tree Processing Observations Multiply Sectioned Bayesian Networks The Task of Distributed Uncertain Reasoning Organization of Agents during Communication Agent Interface Multiagent Dependence Structure Linked Junction Forests Multiagent Distributed Compilation of MSBNs Multiagent Moralization of MSDAG Effective Communication Using Linkage Trees Linkage Trees as I-maps Multiagent Triangulation |
ctrlnum | (ZDB-20-CBO)CR9780511546938 (OCoLC)704478149 (DE-599)BVBBV043945734 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1017/CBO9780511546938 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05027nam a2200625zc 4500</leader><controlfield tag="001">BV043945734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546938</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54693-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704478149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiang, Yang</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic reasoning in multiagent systems</subfield><subfield code="b">a graphical models approach</subfield><subfield code="c">Yang Xiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 294 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Intelligent Agents</subfield><subfield code="t">Reasoning about the Environment</subfield><subfield code="t">Why Uncertain Reasoning?</subfield><subfield code="t">Multiagent Systems</subfield><subfield code="t">Cooperative Multiagent Probabilistic Reasoning</subfield><subfield code="t">Application Domains</subfield><subfield code="t">Bayesian Networks</subfield><subfield code="t">Basics on Bayesian Probability Theory</subfield><subfield code="t">Belief Updating Using JPD</subfield><subfield code="t">Graphs</subfield><subfield code="t">Local Computation and Message Passing</subfield><subfield code="t">Message Passing over Multiple Networks</subfield><subfield code="t">Approximation with Massive Message Passing</subfield><subfield code="t">Belief Updating and Cluster Graphs</subfield><subfield code="t">Conventions for Message Passing in Cluster Graphs</subfield><subfield code="t">Relation with [lambda]</subfield><subfield code="g">i] Message Passing</subfield><subfield code="t">Message Passing in Nondegenerate Cycles</subfield><subfield code="t">Message Passing in Degenerate Cycles</subfield><subfield code="t">Junction Trees</subfield><subfield code="t">Junction Tree Representation</subfield><subfield code="t">Graphical Separation</subfield><subfield code="t">Sufficient Message and Independence</subfield><subfield code="t">Encoding Independence in Graphs</subfield><subfield code="t">Junction Trees and Chordal Graphs</subfield><subfield code="t">Triangulation by Elimination</subfield><subfield code="t">Junction Trees as I-maps</subfield><subfield code="t">Junction Tree Construction</subfield><subfield code="t">Belief Updating with Junction Trees</subfield><subfield code="t">Algebraic Properties of Potentials</subfield><subfield code="t">Potential Assignment in Junction Trees</subfield><subfield code="t">Passing Belief over Separators</subfield><subfield code="t">Passing Belief through a Junction Tree</subfield><subfield code="t">Processing Observations</subfield><subfield code="t">Multiply Sectioned Bayesian Networks</subfield><subfield code="t">The Task of Distributed Uncertain Reasoning</subfield><subfield code="t">Organization of Agents during Communication</subfield><subfield code="t">Agent Interface</subfield><subfield code="t">Multiagent Dependence Structure</subfield><subfield code="t">Linked Junction Forests</subfield><subfield code="t">Multiagent Distributed Compilation of MSBNs</subfield><subfield code="t">Multiagent Moralization of MSDAG</subfield><subfield code="t">Effective Communication Using Linkage Trees</subfield><subfield code="t">Linkage Trees as I-maps</subfield><subfield code="t">Multiagent Triangulation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiagent systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verteilte künstliche Intelligenz</subfield><subfield code="0">(DE-588)4281805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mehragentensystem</subfield><subfield code="0">(DE-588)4389058-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Verteilte künstliche Intelligenz</subfield><subfield code="0">(DE-588)4281805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-15390-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81308-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546938</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354705</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546938</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546938</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945734 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:49:26Z |
institution | BVB |
isbn | 9780511546938 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354705 |
oclc_num | 704478149 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 294 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Xiang, Yang 1954- Verfasser aut Probabilistic reasoning in multiagent systems a graphical models approach Yang Xiang Cambridge Cambridge University Press 2002 1 online resource (xii, 294 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Intelligent Agents Reasoning about the Environment Why Uncertain Reasoning? Multiagent Systems Cooperative Multiagent Probabilistic Reasoning Application Domains Bayesian Networks Basics on Bayesian Probability Theory Belief Updating Using JPD Graphs Local Computation and Message Passing Message Passing over Multiple Networks Approximation with Massive Message Passing Belief Updating and Cluster Graphs Conventions for Message Passing in Cluster Graphs Relation with [lambda] i] Message Passing Message Passing in Nondegenerate Cycles Message Passing in Degenerate Cycles Junction Trees Junction Tree Representation Graphical Separation Sufficient Message and Independence Encoding Independence in Graphs Junction Trees and Chordal Graphs Triangulation by Elimination Junction Trees as I-maps Junction Tree Construction Belief Updating with Junction Trees Algebraic Properties of Potentials Potential Assignment in Junction Trees Passing Belief over Separators Passing Belief through a Junction Tree Processing Observations Multiply Sectioned Bayesian Networks The Task of Distributed Uncertain Reasoning Organization of Agents during Communication Agent Interface Multiagent Dependence Structure Linked Junction Forests Multiagent Distributed Compilation of MSBNs Multiagent Moralization of MSDAG Effective Communication Using Linkage Trees Linkage Trees as I-maps Multiagent Triangulation This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference Datenverarbeitung Distributed artificial intelligence Bayesian statistical decision theory / Data processing Multiagent systems Mehragentensystem (DE-588)4389058-1 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Verteilte künstliche Intelligenz (DE-588)4281805-9 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 s Datenverarbeitung (DE-588)4011152-0 s 1\p DE-604 Mehragentensystem (DE-588)4389058-1 s 2\p DE-604 Verteilte künstliche Intelligenz (DE-588)4281805-9 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-15390-4 Erscheint auch als Druckausgabe 978-0-521-81308-2 https://doi.org/10.1017/CBO9780511546938 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Xiang, Yang 1954- Probabilistic reasoning in multiagent systems a graphical models approach Intelligent Agents Reasoning about the Environment Why Uncertain Reasoning? Multiagent Systems Cooperative Multiagent Probabilistic Reasoning Application Domains Bayesian Networks Basics on Bayesian Probability Theory Belief Updating Using JPD Graphs Local Computation and Message Passing Message Passing over Multiple Networks Approximation with Massive Message Passing Belief Updating and Cluster Graphs Conventions for Message Passing in Cluster Graphs Relation with [lambda] Message Passing in Nondegenerate Cycles Message Passing in Degenerate Cycles Junction Trees Junction Tree Representation Graphical Separation Sufficient Message and Independence Encoding Independence in Graphs Junction Trees and Chordal Graphs Triangulation by Elimination Junction Trees as I-maps Junction Tree Construction Belief Updating with Junction Trees Algebraic Properties of Potentials Potential Assignment in Junction Trees Passing Belief over Separators Passing Belief through a Junction Tree Processing Observations Multiply Sectioned Bayesian Networks The Task of Distributed Uncertain Reasoning Organization of Agents during Communication Agent Interface Multiagent Dependence Structure Linked Junction Forests Multiagent Distributed Compilation of MSBNs Multiagent Moralization of MSDAG Effective Communication Using Linkage Trees Linkage Trees as I-maps Multiagent Triangulation Datenverarbeitung Distributed artificial intelligence Bayesian statistical decision theory / Data processing Multiagent systems Mehragentensystem (DE-588)4389058-1 gnd Datenverarbeitung (DE-588)4011152-0 gnd Verteilte künstliche Intelligenz (DE-588)4281805-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
subject_GND | (DE-588)4389058-1 (DE-588)4011152-0 (DE-588)4281805-9 (DE-588)4144220-9 |
title | Probabilistic reasoning in multiagent systems a graphical models approach |
title_alt | Intelligent Agents Reasoning about the Environment Why Uncertain Reasoning? Multiagent Systems Cooperative Multiagent Probabilistic Reasoning Application Domains Bayesian Networks Basics on Bayesian Probability Theory Belief Updating Using JPD Graphs Local Computation and Message Passing Message Passing over Multiple Networks Approximation with Massive Message Passing Belief Updating and Cluster Graphs Conventions for Message Passing in Cluster Graphs Relation with [lambda] Message Passing in Nondegenerate Cycles Message Passing in Degenerate Cycles Junction Trees Junction Tree Representation Graphical Separation Sufficient Message and Independence Encoding Independence in Graphs Junction Trees and Chordal Graphs Triangulation by Elimination Junction Trees as I-maps Junction Tree Construction Belief Updating with Junction Trees Algebraic Properties of Potentials Potential Assignment in Junction Trees Passing Belief over Separators Passing Belief through a Junction Tree Processing Observations Multiply Sectioned Bayesian Networks The Task of Distributed Uncertain Reasoning Organization of Agents during Communication Agent Interface Multiagent Dependence Structure Linked Junction Forests Multiagent Distributed Compilation of MSBNs Multiagent Moralization of MSDAG Effective Communication Using Linkage Trees Linkage Trees as I-maps Multiagent Triangulation |
title_auth | Probabilistic reasoning in multiagent systems a graphical models approach |
title_exact_search | Probabilistic reasoning in multiagent systems a graphical models approach |
title_full | Probabilistic reasoning in multiagent systems a graphical models approach Yang Xiang |
title_fullStr | Probabilistic reasoning in multiagent systems a graphical models approach Yang Xiang |
title_full_unstemmed | Probabilistic reasoning in multiagent systems a graphical models approach Yang Xiang |
title_short | Probabilistic reasoning in multiagent systems |
title_sort | probabilistic reasoning in multiagent systems a graphical models approach |
title_sub | a graphical models approach |
topic | Datenverarbeitung Distributed artificial intelligence Bayesian statistical decision theory / Data processing Multiagent systems Mehragentensystem (DE-588)4389058-1 gnd Datenverarbeitung (DE-588)4011152-0 gnd Verteilte künstliche Intelligenz (DE-588)4281805-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
topic_facet | Datenverarbeitung Distributed artificial intelligence Bayesian statistical decision theory / Data processing Multiagent systems Mehragentensystem Verteilte künstliche Intelligenz Bayes-Entscheidungstheorie |
url | https://doi.org/10.1017/CBO9780511546938 |
work_keys_str_mv | AT xiangyang probabilisticreasoninginmultiagentsystemsagraphicalmodelsapproach |