Modeling aggregate behavior and fluctuations in economics: stochastic views of interacting agents
This book has two components: stochastic dynamics and stochastic random combinatorial analysis. The first discusses evolving patterns of interactions of a large but finite number of agents of several types. Changes of agent types or their choices or decisions over time are formulated as jump Markov...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schlagwörter: | |
Links: | https://doi.org/10.1017/CBO9780511510649 https://doi.org/10.1017/CBO9780511510649 https://doi.org/10.1017/CBO9780511510649 https://doi.org/10.1017/CBO9780511510649 |
Zusammenfassung: | This book has two components: stochastic dynamics and stochastic random combinatorial analysis. The first discusses evolving patterns of interactions of a large but finite number of agents of several types. Changes of agent types or their choices or decisions over time are formulated as jump Markov processes with suitably specified transition rates: optimisations by agents make these rates generally endogenous. Probabilistic equilibrium selection rules are also discussed, together with the distributions of relative sizes of the bases of attraction. As the number of agents approaches infinity, we recover deterministic macroeconomic relations of more conventional economic models. The second component analyses how agents form clusters of various sizes. This has applications for discussing sizes or shares of markets by various agents which involve some combinatorial analysis patterned after the population genetics literature. These are shown to be relevant to distributions of returns to assets, volatility of returns, and power laws |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Umfang: | 1 online resource (xv, 263 pages) |
ISBN: | 9780511510649 |
DOI: | 10.1017/CBO9780511510649 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043929922 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2002 xx o|||| 00||| eng d | ||
020 | |a 9780511510649 |c Online |9 978-0-511-51064-9 | ||
024 | 7 | |a 10.1017/CBO9780511510649 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511510649 | ||
035 | |a (OCoLC)967487271 | ||
035 | |a (DE-599)BVBBV043929922 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-92 | ||
082 | 0 | |a 338.5/212 |2 21 | |
084 | |a QC 110 |0 (DE-625)141245: |2 rvk | ||
084 | |a QC 300 |0 (DE-625)141265: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
100 | 1 | |a Aoki, Masanao |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modeling aggregate behavior and fluctuations in economics |b stochastic views of interacting agents |c Masanao Aoki |
246 | 1 | 3 | |a Modeling Aggregate Behavior & Fluctuations in Economics |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xv, 263 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Our Objectives and Approaches |t Partial List of Applications |t States: Vectors of Fractions of Types and Partition Vectors |t Vectors of Fractions |t Partition Vectors |t Jump Markov Processes |t The Master Equation |t Decomposable Random Combinatorial Structures |t Sizes and Limit Behavior of Large Fractions |t Setting Up Dynamic Models |t Two Kinds of State Vectors |t Empirical Distributions |t Exchangeable Random Sequences |t Partition Exchangeability |t Transition Rates |t Detailed-Balance Conditions and Stationary Distributions |t The Master Equation |t Continuous-Time Dynamics |t Power-Series Expansion |t Aggregate Dynamics and Fokker-Planck Equation |t Discrete-Time Dynamics |t Introductory Simple and Simplified Models |t A Two-Sector Model of Fluctuations |t Closed Binary Choice Models |t A Polya Distribution Model |t Open Binary Models |t Two Logistic Process Models |t Model 1: The Aggregate Dynamics and Associated Fluctuations |t Model 2: Nonlinear Exit Rate |t A Nonstationary Polya Model |t An Example: A Deterministic Analysis of Nonlinear Effects May Mislead! |t Aggregate Dynamics and Fluctuations of Simple Models |t Dynamics of Binary Choice Models |t Dynamics for the Aggregate Variable |t Potentials |t Critical Points and Hazard Function |t Multiplicity--An Aspect of Random Combinatorial Features |t Evaluating Alternatives |t Representation of Relative Merits of Alternatives |t Value Functions |t Extreme Distributions and Gibbs Distributions |t Type I: Extreme Distribution |
520 | |a This book has two components: stochastic dynamics and stochastic random combinatorial analysis. The first discusses evolving patterns of interactions of a large but finite number of agents of several types. Changes of agent types or their choices or decisions over time are formulated as jump Markov processes with suitably specified transition rates: optimisations by agents make these rates generally endogenous. Probabilistic equilibrium selection rules are also discussed, together with the distributions of relative sizes of the bases of attraction. As the number of agents approaches infinity, we recover deterministic macroeconomic relations of more conventional economic models. The second component analyses how agents form clusters of various sizes. This has applications for discussing sizes or shares of markets by various agents which involve some combinatorial analysis patterned after the population genetics literature. These are shown to be relevant to distributions of returns to assets, volatility of returns, and power laws | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Demand (Economic theory) / Mathematical models | |
650 | 4 | |a Supply and demand / Mathematical models | |
650 | 4 | |a Consumption (Economics) / Mathematical models | |
650 | 4 | |a Business cycles / Mathematical models | |
650 | 4 | |a Statics and dynamics (Social sciences) / Mathematical models | |
650 | 4 | |a Stochastic processes / Mathematical models | |
650 | 0 | 7 | |a Dynamische Makroökonomie |0 (DE-588)4200428-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interaktion |0 (DE-588)4027266-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dynamische Makroökonomie |0 (DE-588)4200428-7 |D s |
689 | 0 | 1 | |a Interaktion |0 (DE-588)4027266-7 |D s |
689 | 0 | 2 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-60619-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-78126-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511510649 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029339001 | |
966 | e | |u https://doi.org/10.1017/CBO9780511510649 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511510649 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511510649 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982546201903104 |
---|---|
any_adam_object | |
author | Aoki, Masanao |
author_facet | Aoki, Masanao |
author_role | aut |
author_sort | Aoki, Masanao |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV043929922 |
classification_rvk | QC 110 QC 300 SK 850 |
collection | ZDB-20-CBO |
contents | Our Objectives and Approaches Partial List of Applications States: Vectors of Fractions of Types and Partition Vectors Vectors of Fractions Partition Vectors Jump Markov Processes The Master Equation Decomposable Random Combinatorial Structures Sizes and Limit Behavior of Large Fractions Setting Up Dynamic Models Two Kinds of State Vectors Empirical Distributions Exchangeable Random Sequences Partition Exchangeability Transition Rates Detailed-Balance Conditions and Stationary Distributions Continuous-Time Dynamics Power-Series Expansion Aggregate Dynamics and Fokker-Planck Equation Discrete-Time Dynamics Introductory Simple and Simplified Models A Two-Sector Model of Fluctuations Closed Binary Choice Models A Polya Distribution Model Open Binary Models Two Logistic Process Models Model 1: The Aggregate Dynamics and Associated Fluctuations Model 2: Nonlinear Exit Rate A Nonstationary Polya Model An Example: A Deterministic Analysis of Nonlinear Effects May Mislead! Aggregate Dynamics and Fluctuations of Simple Models Dynamics of Binary Choice Models Dynamics for the Aggregate Variable Potentials Critical Points and Hazard Function Multiplicity--An Aspect of Random Combinatorial Features Evaluating Alternatives Representation of Relative Merits of Alternatives Value Functions Extreme Distributions and Gibbs Distributions Type I: Extreme Distribution |
ctrlnum | (ZDB-20-CBO)CR9780511510649 (OCoLC)967487271 (DE-599)BVBBV043929922 |
dewey-full | 338.5/212 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 338 - Production |
dewey-raw | 338.5/212 |
dewey-search | 338.5/212 |
dewey-sort | 3338.5 3212 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511510649 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05242nam a2200637zc 4500</leader><controlfield tag="001">BV043929922</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511510649</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-51064-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511510649</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511510649</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967487271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043929922</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">338.5/212</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 110</subfield><subfield code="0">(DE-625)141245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 300</subfield><subfield code="0">(DE-625)141265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aoki, Masanao</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling aggregate behavior and fluctuations in economics</subfield><subfield code="b">stochastic views of interacting agents</subfield><subfield code="c">Masanao Aoki</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Modeling Aggregate Behavior & Fluctuations in Economics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 263 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Our Objectives and Approaches</subfield><subfield code="t">Partial List of Applications</subfield><subfield code="t">States: Vectors of Fractions of Types and Partition Vectors</subfield><subfield code="t">Vectors of Fractions</subfield><subfield code="t">Partition Vectors</subfield><subfield code="t">Jump Markov Processes</subfield><subfield code="t">The Master Equation</subfield><subfield code="t">Decomposable Random Combinatorial Structures</subfield><subfield code="t">Sizes and Limit Behavior of Large Fractions</subfield><subfield code="t">Setting Up Dynamic Models</subfield><subfield code="t">Two Kinds of State Vectors</subfield><subfield code="t">Empirical Distributions</subfield><subfield code="t">Exchangeable Random Sequences</subfield><subfield code="t">Partition Exchangeability</subfield><subfield code="t">Transition Rates</subfield><subfield code="t">Detailed-Balance Conditions and Stationary Distributions</subfield><subfield code="t">The Master Equation</subfield><subfield code="t">Continuous-Time Dynamics</subfield><subfield code="t">Power-Series Expansion</subfield><subfield code="t">Aggregate Dynamics and Fokker-Planck Equation</subfield><subfield code="t">Discrete-Time Dynamics</subfield><subfield code="t">Introductory Simple and Simplified Models</subfield><subfield code="t">A Two-Sector Model of Fluctuations</subfield><subfield code="t">Closed Binary Choice Models</subfield><subfield code="t">A Polya Distribution Model</subfield><subfield code="t">Open Binary Models</subfield><subfield code="t">Two Logistic Process Models</subfield><subfield code="t">Model 1: The Aggregate Dynamics and Associated Fluctuations</subfield><subfield code="t">Model 2: Nonlinear Exit Rate</subfield><subfield code="t">A Nonstationary Polya Model</subfield><subfield code="t">An Example: A Deterministic Analysis of Nonlinear Effects May Mislead!</subfield><subfield code="t">Aggregate Dynamics and Fluctuations of Simple Models</subfield><subfield code="t">Dynamics of Binary Choice Models</subfield><subfield code="t">Dynamics for the Aggregate Variable</subfield><subfield code="t">Potentials</subfield><subfield code="t">Critical Points and Hazard Function</subfield><subfield code="t">Multiplicity--An Aspect of Random Combinatorial Features</subfield><subfield code="t">Evaluating Alternatives</subfield><subfield code="t">Representation of Relative Merits of Alternatives</subfield><subfield code="t">Value Functions</subfield><subfield code="t">Extreme Distributions and Gibbs Distributions</subfield><subfield code="t">Type I: Extreme Distribution</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book has two components: stochastic dynamics and stochastic random combinatorial analysis. The first discusses evolving patterns of interactions of a large but finite number of agents of several types. Changes of agent types or their choices or decisions over time are formulated as jump Markov processes with suitably specified transition rates: optimisations by agents make these rates generally endogenous. Probabilistic equilibrium selection rules are also discussed, together with the distributions of relative sizes of the bases of attraction. As the number of agents approaches infinity, we recover deterministic macroeconomic relations of more conventional economic models. The second component analyses how agents form clusters of various sizes. This has applications for discussing sizes or shares of markets by various agents which involve some combinatorial analysis patterned after the population genetics literature. These are shown to be relevant to distributions of returns to assets, volatility of returns, and power laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Demand (Economic theory) / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supply and demand / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consumption (Economics) / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business cycles / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statics and dynamics (Social sciences) / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamische Makroökonomie</subfield><subfield code="0">(DE-588)4200428-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interaktion</subfield><subfield code="0">(DE-588)4027266-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamische Makroökonomie</subfield><subfield code="0">(DE-588)4200428-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Interaktion</subfield><subfield code="0">(DE-588)4027266-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-60619-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-78126-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511510649</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029339001</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511510649</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511510649</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511510649</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043929922 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:48:56Z |
institution | BVB |
isbn | 9780511510649 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029339001 |
oclc_num | 967487271 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-92 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-92 |
physical | 1 online resource (xv, 263 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Aoki, Masanao Verfasser aut Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents Masanao Aoki Modeling Aggregate Behavior & Fluctuations in Economics Cambridge Cambridge University Press 2002 1 online resource (xv, 263 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Our Objectives and Approaches Partial List of Applications States: Vectors of Fractions of Types and Partition Vectors Vectors of Fractions Partition Vectors Jump Markov Processes The Master Equation Decomposable Random Combinatorial Structures Sizes and Limit Behavior of Large Fractions Setting Up Dynamic Models Two Kinds of State Vectors Empirical Distributions Exchangeable Random Sequences Partition Exchangeability Transition Rates Detailed-Balance Conditions and Stationary Distributions The Master Equation Continuous-Time Dynamics Power-Series Expansion Aggregate Dynamics and Fokker-Planck Equation Discrete-Time Dynamics Introductory Simple and Simplified Models A Two-Sector Model of Fluctuations Closed Binary Choice Models A Polya Distribution Model Open Binary Models Two Logistic Process Models Model 1: The Aggregate Dynamics and Associated Fluctuations Model 2: Nonlinear Exit Rate A Nonstationary Polya Model An Example: A Deterministic Analysis of Nonlinear Effects May Mislead! Aggregate Dynamics and Fluctuations of Simple Models Dynamics of Binary Choice Models Dynamics for the Aggregate Variable Potentials Critical Points and Hazard Function Multiplicity--An Aspect of Random Combinatorial Features Evaluating Alternatives Representation of Relative Merits of Alternatives Value Functions Extreme Distributions and Gibbs Distributions Type I: Extreme Distribution This book has two components: stochastic dynamics and stochastic random combinatorial analysis. The first discusses evolving patterns of interactions of a large but finite number of agents of several types. Changes of agent types or their choices or decisions over time are formulated as jump Markov processes with suitably specified transition rates: optimisations by agents make these rates generally endogenous. Probabilistic equilibrium selection rules are also discussed, together with the distributions of relative sizes of the bases of attraction. As the number of agents approaches infinity, we recover deterministic macroeconomic relations of more conventional economic models. The second component analyses how agents form clusters of various sizes. This has applications for discussing sizes or shares of markets by various agents which involve some combinatorial analysis patterned after the population genetics literature. These are shown to be relevant to distributions of returns to assets, volatility of returns, and power laws Mathematisches Modell Demand (Economic theory) / Mathematical models Supply and demand / Mathematical models Consumption (Economics) / Mathematical models Business cycles / Mathematical models Statics and dynamics (Social sciences) / Mathematical models Stochastic processes / Mathematical models Dynamische Makroökonomie (DE-588)4200428-7 gnd rswk-swf Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Interaktion (DE-588)4027266-7 gnd rswk-swf Dynamische Makroökonomie (DE-588)4200428-7 s Interaktion (DE-588)4027266-7 s Stochastisches Modell (DE-588)4057633-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-60619-6 Erscheint auch als Druckausgabe 978-0-521-78126-8 https://doi.org/10.1017/CBO9780511510649 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aoki, Masanao Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents Our Objectives and Approaches Partial List of Applications States: Vectors of Fractions of Types and Partition Vectors Vectors of Fractions Partition Vectors Jump Markov Processes The Master Equation Decomposable Random Combinatorial Structures Sizes and Limit Behavior of Large Fractions Setting Up Dynamic Models Two Kinds of State Vectors Empirical Distributions Exchangeable Random Sequences Partition Exchangeability Transition Rates Detailed-Balance Conditions and Stationary Distributions Continuous-Time Dynamics Power-Series Expansion Aggregate Dynamics and Fokker-Planck Equation Discrete-Time Dynamics Introductory Simple and Simplified Models A Two-Sector Model of Fluctuations Closed Binary Choice Models A Polya Distribution Model Open Binary Models Two Logistic Process Models Model 1: The Aggregate Dynamics and Associated Fluctuations Model 2: Nonlinear Exit Rate A Nonstationary Polya Model An Example: A Deterministic Analysis of Nonlinear Effects May Mislead! Aggregate Dynamics and Fluctuations of Simple Models Dynamics of Binary Choice Models Dynamics for the Aggregate Variable Potentials Critical Points and Hazard Function Multiplicity--An Aspect of Random Combinatorial Features Evaluating Alternatives Representation of Relative Merits of Alternatives Value Functions Extreme Distributions and Gibbs Distributions Type I: Extreme Distribution Mathematisches Modell Demand (Economic theory) / Mathematical models Supply and demand / Mathematical models Consumption (Economics) / Mathematical models Business cycles / Mathematical models Statics and dynamics (Social sciences) / Mathematical models Stochastic processes / Mathematical models Dynamische Makroökonomie (DE-588)4200428-7 gnd Stochastisches Modell (DE-588)4057633-4 gnd Interaktion (DE-588)4027266-7 gnd |
subject_GND | (DE-588)4200428-7 (DE-588)4057633-4 (DE-588)4027266-7 |
title | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents |
title_alt | Modeling Aggregate Behavior & Fluctuations in Economics Our Objectives and Approaches Partial List of Applications States: Vectors of Fractions of Types and Partition Vectors Vectors of Fractions Partition Vectors Jump Markov Processes The Master Equation Decomposable Random Combinatorial Structures Sizes and Limit Behavior of Large Fractions Setting Up Dynamic Models Two Kinds of State Vectors Empirical Distributions Exchangeable Random Sequences Partition Exchangeability Transition Rates Detailed-Balance Conditions and Stationary Distributions Continuous-Time Dynamics Power-Series Expansion Aggregate Dynamics and Fokker-Planck Equation Discrete-Time Dynamics Introductory Simple and Simplified Models A Two-Sector Model of Fluctuations Closed Binary Choice Models A Polya Distribution Model Open Binary Models Two Logistic Process Models Model 1: The Aggregate Dynamics and Associated Fluctuations Model 2: Nonlinear Exit Rate A Nonstationary Polya Model An Example: A Deterministic Analysis of Nonlinear Effects May Mislead! Aggregate Dynamics and Fluctuations of Simple Models Dynamics of Binary Choice Models Dynamics for the Aggregate Variable Potentials Critical Points and Hazard Function Multiplicity--An Aspect of Random Combinatorial Features Evaluating Alternatives Representation of Relative Merits of Alternatives Value Functions Extreme Distributions and Gibbs Distributions Type I: Extreme Distribution |
title_auth | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents |
title_exact_search | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents |
title_full | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents Masanao Aoki |
title_fullStr | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents Masanao Aoki |
title_full_unstemmed | Modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents Masanao Aoki |
title_short | Modeling aggregate behavior and fluctuations in economics |
title_sort | modeling aggregate behavior and fluctuations in economics stochastic views of interacting agents |
title_sub | stochastic views of interacting agents |
topic | Mathematisches Modell Demand (Economic theory) / Mathematical models Supply and demand / Mathematical models Consumption (Economics) / Mathematical models Business cycles / Mathematical models Statics and dynamics (Social sciences) / Mathematical models Stochastic processes / Mathematical models Dynamische Makroökonomie (DE-588)4200428-7 gnd Stochastisches Modell (DE-588)4057633-4 gnd Interaktion (DE-588)4027266-7 gnd |
topic_facet | Mathematisches Modell Demand (Economic theory) / Mathematical models Supply and demand / Mathematical models Consumption (Economics) / Mathematical models Business cycles / Mathematical models Statics and dynamics (Social sciences) / Mathematical models Stochastic processes / Mathematical models Dynamische Makroökonomie Stochastisches Modell Interaktion |
url | https://doi.org/10.1017/CBO9780511510649 |
work_keys_str_mv | AT aokimasanao modelingaggregatebehaviorandfluctuationsineconomicsstochasticviewsofinteractingagents AT aokimasanao modelingaggregatebehaviorfluctuationsineconomics |