Nanometer-scale defect detection using polarized light:
This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. I...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
London, UK
ISTE
2016
|
Schriftenreihe: | Mechanical engineering and solid mechanics series
|
Schlagwörter: | |
Links: | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 |
Zusammenfassung: | This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. It presents optical techniques based on polarized light allowing the characterization of defects in materials or in their interfaces that are likely to impact performance. It also describes ways of knowing mechanical properties of nanomaterials by using theoretical models and analysis of experimental results and their uncertainties |
Beschreibung: | Cover; Title Page; Copyright ; Contents; Preface; 1. Uncertainties; 1.1. Introduction; 1.2. The reliability based design approach; 1.2.1. The MC method; 1.2.2. The perturbation method; 1.2.3. The polynomial chaos method; 1.3. The design of experiments method; 1.3.1. Principle; 1.3.2. The Taguchi method; 1.4. The set approach; 1.4.1. The method of intervals; 1.4.2. Fuzzy logic based method; 1.5. Principal component analysis; 1.5.1. Description of the process; 1.5.2. Mathematical roots; 1.5.3. Interpretation of results; 1.6. Conclusions; 2. Reliability-based Design Optimization 2.1. Introduction2.2. Deterministic design optimization; 2.3. Reliability analysis; 2.3.1. Optimal conditions; 2.4. Reliability-based design optimization; 2.4.1. The objective function; 2.4.2. Total cost consideration; 2.4.3. The design variables; 2.4.4. Response of a system by RBDO; 2.4.5. Limit states; 2.4.6. Solution techniques; 2.5. Application: optimization of materials of an electronic circuit board; 2.5.1. Optimization problem; 2.5.2. Optimization and uncertainties; 2.5.3. Results analysis; 2.6. Conclusions; 3. The Wave-Particle Nature of Light; 3.1. Introduction 3.2. The optical wave theory of light according to Huyghens and Fresnel3.2.1. The three postulates of wave optics; 3.2.2. Luminous power and energy; 3.2.3. The monochromatic wave; 3.3. The electromagnetic wave according to Maxwell's theory; 3.3.1. The Maxwell equations; 3.3.2. The wave equation according to the Coulomb's gauge; 3.3.3. The wave equation according to the Lorenz's gauge; 3.4. The quantum theory of light; 3.4.1. The annihilation and creation operators of the harmonic oscillator; 3.4.2. The quantization of the electromagnetic field and the potential vector 3.4.3. Field modes in the second quantization4. The Polarization States of Light; 4.1. Introduction; 4.2. The polarization of light by the matrix method; 4.2.1. The Jones representation of polarization; 4.2.2. The Stokes and Muller representation of polarization; 4.3. Other methods to represent polarization; 4.3.1. The Poincaré description of polarization; 4.3.2. The quantum description of polarization; 4.4. Conclusions; 5. Interaction of Light and Matter; 5.1. Introduction; 5.2. Classical models; 5.2.1. The Drude model; 5.2.2. The Sellmeir and Lorentz models 5.3. Quantum models for light and matter5.3.1. The quantum description of matter; 5.3.2. Jaynes-Cummings model; 5.4. Semiclassical models; 5.4.1. Tauc-Lorentz model; 5.4.2. Cody-Lorentz model; 5.5. Conclusions; 6. Experimentation and Theoretical Models; 6.1. Introduction; 6.2. The laser source of polarized light; 6.2.1. Principle of operation of a laser; 6.2.2. The specificities of light from a laser; 6.3. Laser-induced fluorescence; 6.3.1. Principle of the method; 6.3.2. Description of the experimental setup; 6.4. The DR method; 6.4.1. Principle of the method |
Umfang: | 1 online resource (xiv, 296 pages.) |
ISBN: | 1119329639 1119329655 9781119329633 9781119329657 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043838280 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161021s2016 xx o|||| 00||| eng d | ||
020 | |a 1119329639 |9 1-119-32963-9 | ||
020 | |a 1119329655 |9 1-119-32965-5 | ||
020 | |a 9781119329633 |c Online |9 978-1-119-32963-3 | ||
020 | |a 9781119329657 |9 978-1-119-32965-7 | ||
035 | |a (ZDB-35-WIC)ocn957597663 | ||
035 | |a (OCoLC)965126046 | ||
035 | |a (DE-599)BVBBV043838280 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-861 | ||
082 | 0 | |a 620.1126 | |
100 | 1 | |a Dahoo, Pierre Richard |4 aut | |
245 | 1 | 0 | |a Nanometer-scale defect detection using polarized light |c Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami |
264 | 1 | |a London, UK |b ISTE |c 2016 | |
300 | |a 1 online resource (xiv, 296 pages.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mechanical engineering and solid mechanics series | |
500 | |a Cover; Title Page; Copyright ; Contents; Preface; 1. Uncertainties; 1.1. Introduction; 1.2. The reliability based design approach; 1.2.1. The MC method; 1.2.2. The perturbation method; 1.2.3. The polynomial chaos method; 1.3. The design of experiments method; 1.3.1. Principle; 1.3.2. The Taguchi method; 1.4. The set approach; 1.4.1. The method of intervals; 1.4.2. Fuzzy logic based method; 1.5. Principal component analysis; 1.5.1. Description of the process; 1.5.2. Mathematical roots; 1.5.3. Interpretation of results; 1.6. Conclusions; 2. Reliability-based Design Optimization | ||
500 | |a 2.1. Introduction2.2. Deterministic design optimization; 2.3. Reliability analysis; 2.3.1. Optimal conditions; 2.4. Reliability-based design optimization; 2.4.1. The objective function; 2.4.2. Total cost consideration; 2.4.3. The design variables; 2.4.4. Response of a system by RBDO; 2.4.5. Limit states; 2.4.6. Solution techniques; 2.5. Application: optimization of materials of an electronic circuit board; 2.5.1. Optimization problem; 2.5.2. Optimization and uncertainties; 2.5.3. Results analysis; 2.6. Conclusions; 3. The Wave-Particle Nature of Light; 3.1. Introduction | ||
500 | |a 3.2. The optical wave theory of light according to Huyghens and Fresnel3.2.1. The three postulates of wave optics; 3.2.2. Luminous power and energy; 3.2.3. The monochromatic wave; 3.3. The electromagnetic wave according to Maxwell's theory; 3.3.1. The Maxwell equations; 3.3.2. The wave equation according to the Coulomb's gauge; 3.3.3. The wave equation according to the Lorenz's gauge; 3.4. The quantum theory of light; 3.4.1. The annihilation and creation operators of the harmonic oscillator; 3.4.2. The quantization of the electromagnetic field and the potential vector | ||
500 | |a 3.4.3. Field modes in the second quantization4. The Polarization States of Light; 4.1. Introduction; 4.2. The polarization of light by the matrix method; 4.2.1. The Jones representation of polarization; 4.2.2. The Stokes and Muller representation of polarization; 4.3. Other methods to represent polarization; 4.3.1. The Poincaré description of polarization; 4.3.2. The quantum description of polarization; 4.4. Conclusions; 5. Interaction of Light and Matter; 5.1. Introduction; 5.2. Classical models; 5.2.1. The Drude model; 5.2.2. The Sellmeir and Lorentz models | ||
500 | |a 5.3. Quantum models for light and matter5.3.1. The quantum description of matter; 5.3.2. Jaynes-Cummings model; 5.4. Semiclassical models; 5.4.1. Tauc-Lorentz model; 5.4.2. Cody-Lorentz model; 5.5. Conclusions; 6. Experimentation and Theoretical Models; 6.1. Introduction; 6.2. The laser source of polarized light; 6.2.1. Principle of operation of a laser; 6.2.2. The specificities of light from a laser; 6.3. Laser-induced fluorescence; 6.3.1. Principle of the method; 6.3.2. Description of the experimental setup; 6.4. The DR method; 6.4.1. Principle of the method | ||
520 | |a This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. It presents optical techniques based on polarized light allowing the characterization of defects in materials or in their interfaces that are likely to impact performance. It also describes ways of knowing mechanical properties of nanomaterials by using theoretical models and analysis of experimental results and their uncertainties | ||
650 | 7 | |a TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Reference |2 bisacsh | |
650 | 4 | |a Materials / Defects / Analysis | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-84821-936-6 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q UBG_PDA_WIC | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029248875 | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 |l DE-861 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 |l DE-473 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982394211860481 |
---|---|
any_adam_object | |
author | Dahoo, Pierre Richard |
author_facet | Dahoo, Pierre Richard |
author_role | aut |
author_sort | Dahoo, Pierre Richard |
author_variant | p r d pr prd |
building | Verbundindex |
bvnumber | BV043838280 |
collection | ZDB-35-WIC |
ctrlnum | (ZDB-35-WIC)ocn957597663 (OCoLC)965126046 (DE-599)BVBBV043838280 |
dewey-full | 620.1126 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1126 |
dewey-search | 620.1126 |
dewey-sort | 3620.1126 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05426nam a2200517zc 4500</leader><controlfield tag="001">BV043838280</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161021s2016 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119329639</subfield><subfield code="9">1-119-32963-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119329655</subfield><subfield code="9">1-119-32965-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119329633</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-32963-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119329657</subfield><subfield code="9">978-1-119-32965-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocn957597663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)965126046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043838280</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1126</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dahoo, Pierre Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanometer-scale defect detection using polarized light</subfield><subfield code="c">Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK</subfield><subfield code="b">ISTE</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 296 pages.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mechanical engineering and solid mechanics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title Page; Copyright ; Contents; Preface; 1. Uncertainties; 1.1. Introduction; 1.2. The reliability based design approach; 1.2.1. The MC method; 1.2.2. The perturbation method; 1.2.3. The polynomial chaos method; 1.3. The design of experiments method; 1.3.1. Principle; 1.3.2. The Taguchi method; 1.4. The set approach; 1.4.1. The method of intervals; 1.4.2. Fuzzy logic based method; 1.5. Principal component analysis; 1.5.1. Description of the process; 1.5.2. Mathematical roots; 1.5.3. Interpretation of results; 1.6. Conclusions; 2. Reliability-based Design Optimization</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1. Introduction2.2. Deterministic design optimization; 2.3. Reliability analysis; 2.3.1. Optimal conditions; 2.4. Reliability-based design optimization; 2.4.1. The objective function; 2.4.2. Total cost consideration; 2.4.3. The design variables; 2.4.4. Response of a system by RBDO; 2.4.5. Limit states; 2.4.6. Solution techniques; 2.5. Application: optimization of materials of an electronic circuit board; 2.5.1. Optimization problem; 2.5.2. Optimization and uncertainties; 2.5.3. Results analysis; 2.6. Conclusions; 3. The Wave-Particle Nature of Light; 3.1. Introduction</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.2. The optical wave theory of light according to Huyghens and Fresnel3.2.1. The three postulates of wave optics; 3.2.2. Luminous power and energy; 3.2.3. The monochromatic wave; 3.3. The electromagnetic wave according to Maxwell's theory; 3.3.1. The Maxwell equations; 3.3.2. The wave equation according to the Coulomb's gauge; 3.3.3. The wave equation according to the Lorenz's gauge; 3.4. The quantum theory of light; 3.4.1. The annihilation and creation operators of the harmonic oscillator; 3.4.2. The quantization of the electromagnetic field and the potential vector</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.4.3. Field modes in the second quantization4. The Polarization States of Light; 4.1. Introduction; 4.2. The polarization of light by the matrix method; 4.2.1. The Jones representation of polarization; 4.2.2. The Stokes and Muller representation of polarization; 4.3. Other methods to represent polarization; 4.3.1. The Poincaré description of polarization; 4.3.2. The quantum description of polarization; 4.4. Conclusions; 5. Interaction of Light and Matter; 5.1. Introduction; 5.2. Classical models; 5.2.1. The Drude model; 5.2.2. The Sellmeir and Lorentz models</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.3. Quantum models for light and matter5.3.1. The quantum description of matter; 5.3.2. Jaynes-Cummings model; 5.4. Semiclassical models; 5.4.1. Tauc-Lorentz model; 5.4.2. Cody-Lorentz model; 5.5. Conclusions; 6. Experimentation and Theoretical Models; 6.1. Introduction; 6.2. The laser source of polarized light; 6.2.1. Principle of operation of a laser; 6.2.2. The specificities of light from a laser; 6.3. Laser-induced fluorescence; 6.3.1. Principle of the method; 6.3.2. Description of the experimental setup; 6.4. The DR method; 6.4.1. Principle of the method</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. It presents optical techniques based on polarized light allowing the characterization of defects in materials or in their interfaces that are likely to impact performance. It also describes ways of knowing mechanical properties of nanomaterials by using theoretical models and analysis of experimental results and their uncertainties</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials / Defects / Analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-84821-936-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029248875</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043838280 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:46:31Z |
institution | BVB |
isbn | 1119329639 1119329655 9781119329633 9781119329657 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029248875 |
oclc_num | 957597663 965126046 |
open_access_boolean | |
owner | DE-861 |
owner_facet | DE-861 |
physical | 1 online resource (xiv, 296 pages.) |
psigel | ZDB-35-WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | ISTE |
record_format | marc |
series2 | Mechanical engineering and solid mechanics series |
spelling | Dahoo, Pierre Richard aut Nanometer-scale defect detection using polarized light Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami London, UK ISTE 2016 1 online resource (xiv, 296 pages.) txt rdacontent c rdamedia cr rdacarrier Mechanical engineering and solid mechanics series Cover; Title Page; Copyright ; Contents; Preface; 1. Uncertainties; 1.1. Introduction; 1.2. The reliability based design approach; 1.2.1. The MC method; 1.2.2. The perturbation method; 1.2.3. The polynomial chaos method; 1.3. The design of experiments method; 1.3.1. Principle; 1.3.2. The Taguchi method; 1.4. The set approach; 1.4.1. The method of intervals; 1.4.2. Fuzzy logic based method; 1.5. Principal component analysis; 1.5.1. Description of the process; 1.5.2. Mathematical roots; 1.5.3. Interpretation of results; 1.6. Conclusions; 2. Reliability-based Design Optimization 2.1. Introduction2.2. Deterministic design optimization; 2.3. Reliability analysis; 2.3.1. Optimal conditions; 2.4. Reliability-based design optimization; 2.4.1. The objective function; 2.4.2. Total cost consideration; 2.4.3. The design variables; 2.4.4. Response of a system by RBDO; 2.4.5. Limit states; 2.4.6. Solution techniques; 2.5. Application: optimization of materials of an electronic circuit board; 2.5.1. Optimization problem; 2.5.2. Optimization and uncertainties; 2.5.3. Results analysis; 2.6. Conclusions; 3. The Wave-Particle Nature of Light; 3.1. Introduction 3.2. The optical wave theory of light according to Huyghens and Fresnel3.2.1. The three postulates of wave optics; 3.2.2. Luminous power and energy; 3.2.3. The monochromatic wave; 3.3. The electromagnetic wave according to Maxwell's theory; 3.3.1. The Maxwell equations; 3.3.2. The wave equation according to the Coulomb's gauge; 3.3.3. The wave equation according to the Lorenz's gauge; 3.4. The quantum theory of light; 3.4.1. The annihilation and creation operators of the harmonic oscillator; 3.4.2. The quantization of the electromagnetic field and the potential vector 3.4.3. Field modes in the second quantization4. The Polarization States of Light; 4.1. Introduction; 4.2. The polarization of light by the matrix method; 4.2.1. The Jones representation of polarization; 4.2.2. The Stokes and Muller representation of polarization; 4.3. Other methods to represent polarization; 4.3.1. The Poincaré description of polarization; 4.3.2. The quantum description of polarization; 4.4. Conclusions; 5. Interaction of Light and Matter; 5.1. Introduction; 5.2. Classical models; 5.2.1. The Drude model; 5.2.2. The Sellmeir and Lorentz models 5.3. Quantum models for light and matter5.3.1. The quantum description of matter; 5.3.2. Jaynes-Cummings model; 5.4. Semiclassical models; 5.4.1. Tauc-Lorentz model; 5.4.2. Cody-Lorentz model; 5.5. Conclusions; 6. Experimentation and Theoretical Models; 6.1. Introduction; 6.2. The laser source of polarized light; 6.2.1. Principle of operation of a laser; 6.2.2. The specificities of light from a laser; 6.3. Laser-induced fluorescence; 6.3.1. Principle of the method; 6.3.2. Description of the experimental setup; 6.4. The DR method; 6.4.1. Principle of the method This book describes experimental and theoretical methods that are implemented within the framework of fundamental research to better understand physical and chemical processes at the nanoscale that are responsible for the remarkable properties of materials used in innovative technological devices. It presents optical techniques based on polarized light allowing the characterization of defects in materials or in their interfaces that are likely to impact performance. It also describes ways of knowing mechanical properties of nanomaterials by using theoretical models and analysis of experimental results and their uncertainties TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS. bisacsh TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Materials / Defects / Analysis Erscheint auch als Druckausgabe 978-1-84821-936-6 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dahoo, Pierre Richard Nanometer-scale defect detection using polarized light TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS. bisacsh TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Materials / Defects / Analysis |
title | Nanometer-scale defect detection using polarized light |
title_auth | Nanometer-scale defect detection using polarized light |
title_exact_search | Nanometer-scale defect detection using polarized light |
title_full | Nanometer-scale defect detection using polarized light Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami |
title_fullStr | Nanometer-scale defect detection using polarized light Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami |
title_full_unstemmed | Nanometer-scale defect detection using polarized light Pierre Richard Dahoo, Philippe Pougnet, Abdelkhalak El Hami |
title_short | Nanometer-scale defect detection using polarized light |
title_sort | nanometer scale defect detection using polarized light |
topic | TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS. bisacsh TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Materials / Defects / Analysis |
topic_facet | TECHNOLOGY & ENGINEERING / Nanotechnology & MEMS. TECHNOLOGY & ENGINEERING / Engineering (General) TECHNOLOGY & ENGINEERING / Reference Materials / Defects / Analysis |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119329633 |
work_keys_str_mv | AT dahoopierrerichard nanometerscaledefectdetectionusingpolarizedlight |