Frontiers in electronics: advanced modeling in nanoscale electron devices
Gespeichert in:
Weitere beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Singapore
World Scientific
[2014]
|
Schriftenreihe: | Selected topics in electronics and systems
volume 54 |
Schlagwörter: | |
Links: | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075 |
Beschreibung: | Description based on online resource; title from PDF title page (ebrary, viewed March 20, 2014) |
Umfang: | 1 online resource (204 pages) |
ISBN: | 9789814583190 9814583197 9789814583183 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043780888 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2014 xx o|||| 00||| eng d | ||
020 | |a 9789814583190 |c ebook |9 978-981-4583-19-0 | ||
020 | |a 9814583197 |c ebook |9 981-4583-19-7 | ||
020 | |a 9789814583183 |9 978-981-4583-18-3 | ||
035 | |a (ZDB-4-EBA)ocn878138012 | ||
035 | |a (ZDB-4-ENC)ocn878138012 | ||
035 | |a (OCoLC)878138012 | ||
035 | |a (DE-599)BVBBV043780888 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 620.5 | |
245 | 1 | 0 | |a Frontiers in electronics |b advanced modeling in nanoscale electron devices |c editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway |
264 | 1 | |a Singapore |b World Scientific |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (204 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Selected topics in electronics and systems |v volume 54 | |
500 | |a Description based on online resource; title from PDF title page (ebrary, viewed March 20, 2014) | ||
505 | 8 | |a PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX) | |
505 | 8 | |a 4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori -- Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model | |
505 | 8 | |a 3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques | |
505 | 8 | |a 2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs | |
505 | 8 | |a 3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs | |
505 | 8 | |a This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear exp | |
650 | 7 | |a Nanoelectronics |2 fast | |
650 | 4 | |a Electron transport / Mathematical models | |
650 | 4 | |a Nanoelectromechanical systems | |
650 | 4 | |a Nanostructured materials / Magnetic properties | |
650 | 4 | |a Nanostructured materials | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Reference |2 bisacsh | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Nanoelectronics | |
700 | 1 | |a Iñiguez, Benjamin |4 edt | |
700 | 1 | |a Fjeldly, Tor A. |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Iniguez, Benjamin |t Frontiers in Electronics : Advanced Modeling of Nanoscale Electron Devices |
912 | |a ZDB-4-EBA | ||
912 | |a ZDB-4-ENC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029191948 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1818982300891742208 |
---|---|
any_adam_object | |
author2 | Iñiguez, Benjamin Fjeldly, Tor A. |
author2_role | edt edt |
author2_variant | b i bi t a f ta taf |
author_facet | Iñiguez, Benjamin Fjeldly, Tor A. |
building | Verbundindex |
bvnumber | BV043780888 |
collection | ZDB-4-EBA ZDB-4-ENC |
contents | PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX) 4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori -- Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model 3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques 2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs 3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear exp |
ctrlnum | (ZDB-4-EBA)ocn878138012 (ZDB-4-ENC)ocn878138012 (OCoLC)878138012 (DE-599)BVBBV043780888 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05793nam a2200601zcb4500</leader><controlfield tag="001">BV043780888</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2014 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814583190</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-4583-19-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814583197</subfield><subfield code="c">ebook</subfield><subfield code="9">981-4583-19-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814583183</subfield><subfield code="9">978-981-4583-18-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn878138012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ENC)ocn878138012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)878138012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043780888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frontiers in electronics</subfield><subfield code="b">advanced modeling in nanoscale electron devices</subfield><subfield code="c">editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (204 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Selected topics in electronics and systems</subfield><subfield code="v">volume 54</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (ebrary, viewed March 20, 2014)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori -- Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear exp</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoelectronics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron transport / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectromechanical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials / Magnetic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectronics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iñiguez, Benjamin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fjeldly, Tor A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Iniguez, Benjamin</subfield><subfield code="t">Frontiers in Electronics : Advanced Modeling of Nanoscale Electron Devices</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ENC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029191948</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=704075</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043780888 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:45:02Z |
institution | BVB |
isbn | 9789814583190 9814583197 9789814583183 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029191948 |
oclc_num | 878138012 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (204 pages) |
psigel | ZDB-4-EBA ZDB-4-ENC ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
series2 | Selected topics in electronics and systems |
spelling | Frontiers in electronics advanced modeling in nanoscale electron devices editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway Singapore World Scientific [2014] © 2014 1 online resource (204 pages) txt rdacontent c rdamedia cr rdacarrier Selected topics in electronics and systems volume 54 Description based on online resource; title from PDF title page (ebrary, viewed March 20, 2014) PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX) 4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori -- Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model 3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques 2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs 3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear exp Nanoelectronics fast Electron transport / Mathematical models Nanoelectromechanical systems Nanostructured materials / Magnetic properties Nanostructured materials TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Mathematisches Modell Nanoelectronics Iñiguez, Benjamin edt Fjeldly, Tor A. edt Erscheint auch als Druck-Ausgabe Iniguez, Benjamin Frontiers in Electronics : Advanced Modeling of Nanoscale Electron Devices |
spellingShingle | Frontiers in electronics advanced modeling in nanoscale electron devices PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX) 4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori -- Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model 3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques 2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs 3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear exp Nanoelectronics fast Electron transport / Mathematical models Nanoelectromechanical systems Nanostructured materials / Magnetic properties Nanostructured materials TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Mathematisches Modell Nanoelectronics |
title | Frontiers in electronics advanced modeling in nanoscale electron devices |
title_auth | Frontiers in electronics advanced modeling in nanoscale electron devices |
title_exact_search | Frontiers in electronics advanced modeling in nanoscale electron devices |
title_full | Frontiers in electronics advanced modeling in nanoscale electron devices editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway |
title_fullStr | Frontiers in electronics advanced modeling in nanoscale electron devices editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway |
title_full_unstemmed | Frontiers in electronics advanced modeling in nanoscale electron devices editors, Benjamin Iñiguez, Universitat Rovira, Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway |
title_short | Frontiers in electronics |
title_sort | frontiers in electronics advanced modeling in nanoscale electron devices |
title_sub | advanced modeling in nanoscale electron devices |
topic | Nanoelectronics fast Electron transport / Mathematical models Nanoelectromechanical systems Nanostructured materials / Magnetic properties Nanostructured materials TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh TECHNOLOGY & ENGINEERING / Reference bisacsh Mathematisches Modell Nanoelectronics |
topic_facet | Nanoelectronics Electron transport / Mathematical models Nanoelectromechanical systems Nanostructured materials / Magnetic properties Nanostructured materials TECHNOLOGY & ENGINEERING / Engineering (General) TECHNOLOGY & ENGINEERING / Reference Mathematisches Modell |
work_keys_str_mv | AT iniguezbenjamin frontiersinelectronicsadvancedmodelinginnanoscaleelectrondevices AT fjeldlytora frontiersinelectronicsadvancedmodelinginnanoscaleelectrondevices |