Combustion thermodynamics and dynamics:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
New York, NY
Cambridge University Press
[2016]
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XII, 464 Seiten Illustrationen, Diagramme |
ISBN: | 9781107067455 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043651798 | ||
003 | DE-604 | ||
005 | 20170421 | ||
007 | t| | ||
008 | 160701s2016 xx a||| |||| 00||| eng d | ||
020 | |a 9781107067455 |c hbk |9 978-1-107-06745-5 | ||
035 | |a (OCoLC)958163613 | ||
035 | |a (DE-599)BVBBV043651798 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 | ||
084 | |a VE 6000 |0 (DE-625)147131:253 |2 rvk | ||
100 | 1 | |a Powers, Joseph M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combustion thermodynamics and dynamics |c Joseph M. Powers, University of Notre Dame |
264 | 1 | |a New York, NY |b Cambridge University Press |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a XII, 464 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Combustion / Mathematical models | |
650 | 4 | |a Thermodynamics / Mathematics | |
650 | 7 | |a Combustion / Mathematical models |2 fast | |
650 | 7 | |a Thermodynamics / Mathematics |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thermodynamik |0 (DE-588)4059827-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | 1 | |a Thermodynamik |0 (DE-588)4059827-5 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029065388 |
Datensatz im Suchindex
_version_ | 1819356317779755008 |
---|---|
adam_text | Contents
Preface page xi
Part I Reactive Systems
1 Introduction to Chemical Kinetics....................................3
1.1 A Gas Phase Kinetic Model 4
1.2 Isothermal, Isochoric Kinetics 8
1.2.1 0-02 Dissociation 9
1.2.2 ZePdovich Mechanism of NO Production 29
1.3 Adiabatic, Isochoric Kinetics 47
1.3.1 Thermal Explosion Theory 48
1.3.2 Detailed H2-Air Kinetics 57
Exercises 60
References 60
2 Gas Mixtures........................................................62
2.1 Some General Issues 62
2.2 Ideal and Nonideal Mixtures ‘ 65
2.3 Ideal Mixtures of Ideal Gases 66
2.3.1 Dalton Model 67
2.3.2 Thermodynamics of the Dalton Model 68
2.3.3 Summary of Properties of the Dalton Mixture Model 77
Exercises 82
References 83
3 Mathematical Foundations of Thermodynamics..........................84
3.1 Exact Differentials and State Properties 84
3.2 Two Independent Variables - 90
3.3 Legendre Transformations 92
3.4 Heat Capacity 97
3.5 Mixtures with Variable Composition 100
3.6 Partial Molar Properties 102
3.6.1 Homogeneous Functions 102
vi
Contents
3.6.2 Gibbs Free Energy 102
3.6.3 Other Properties 103
3.6.4 Relation between Mixture and Partial Molar Properties 105
3.7 Frozen Sound Speed 106
3.8 Irreversible Entropy Production 108
3.9 Equilibrium in a Two-Component System 111
3.9.1 Phase Equilibrium 111
3.9.2 Chemical Equilibrium: Introduction 113
Exercises 122
References 122
4 Thermochemistry of a Single Reaction.................................124
4.1 Molecular Mass 124
4.2 Stoichiometry 126
4.2.1 General Development 126
4.2.2 Fuel-Air Mixtures 133
4.3 First Law Analysis of Reacting Systems 135
4.3.1 Enthalpy of Formation 135
4.3.2 Enthalpy and Internal Energy of Combustion 138
4.3.3 Adiabatic Flame Temperature 138
4.4 Chemical Equilibrium 144
4.5 Chemical Kinetics of a Single Isothermal Reaction 148
4.5.1 Isochoric Systems 149
4.5.2 Isobaric Systems 156
4.6 Some Conservation and Evolution Equations 160
4.6.1 Total Mass Conservation: Isochoric Reaction 160
4.6.2 Element Mass Conservation: Isochoric Reaction 161
4.6.3 Energy Conservation: Adiabatic, Isochoric Reaction 162
4.6.4 Energy Conservation: Adiabatic, Isobaric Reaction 163
4.6.5 Irreversible Entropy Production: Clausius-Duhem
Inequality 166
4.7 Simple One-Step Kinetics 169
Exercises 171
References 172
5 Thermochemistry of Multiple Reactions................................174
5.1 Summary of Multiple Reaction Extensions 174
5.2 Equilibrium Conditions 181
5.2.1 Minimization of G via Lagrange Multipliers 181
5.2.2 Equilibration of All Reactions 187
5.2.3 Zel’dovich’s Uniqueness Proof 188
5.3 Simple Three-Step Kinetics 203
5.3.1 Reversible Kinetics 203
5.3.2 Irreversible Kinetics 206
5.4 Concise Reaction Rate Law Formulations 209
5.4.1 Reactions Dominant over Species 209
5.4.2 Species Dominant over Reactions 210
5.4.3 Linear Mapping Features 211
Contents
vii
5.5 Irreversible Entropy Production 213
5.5.1 Onsager Reciprocity 213
5.5.2 Eigenvalues at Equilibrium 222
5.5.3 ZeFdovich Mechanism Example 226
5.5.4 Extended Zel’dovich Mechanism Example 231
5.5.5 On Potentials, Entropy, and Dynamics 234
Exercises 236
References 236
Nonlinear Dynamics of Reduced Kinetics............. ......239
6.1 Mathematical Background 242
6.1.1 Nonlinear Problem 242
6.1.2 Local Linear Analysis 244
6.1.3 Diagnostics in the Normal Plane 247
6.1.4 Algorithmic Diagnostic Procedure 249
6.2 Reduction of Model Systems 250
6.2.1 Two-Dimensional Phase Space 250
6.2.2 Three-Dimensional Phase Space 255
6.3 Reduction of Combustion Systems 259
6.3.1 ZePdovich Mechanism 259
6.3.2 H2-Air Combustion 263
6.4 Diffusion Effects 270
6.4.1 Galerkin Procedure 270
6.4.2 Linear Example 274
Exercises 277
References 277
Part II Advectîve-Reactive-Diffusive Systems
7 Reactive Navier-Stokes Equations...................................281
71 Evolution Axioms 281
7.1.1 Conservative Form 281
7.1.2 Nonconservative Form 285
72 Mixture Rules 287
73 Constitutive Models 287
74 Temperature Evolution 290
75 Shvab-ZePdovich Formulation 292
Exercises 294
References 295
8 Simple Linear Combustion..........................................297
8.1 Single Reaction 297
8.1.1 Spatially Homogeneous Solution 298
8.1.2 Steady Solution 298
8.1.3 Spatiotemporal Solution 301
8.2 Multiple Reactions 304
8.2.1 Spatially Homogeneous Solution 304
8.2.2 Steady Solution 306
309
311
312
312
314
314
315
315
317
318
319
319
320
320
321
325
329
331
331
337
338
338
340
341
341
343
344
347
348
349
351
359
360
361
362
363
365
369
369
372
373
375
376
376
Contents
8.2.3 Spatiotemporal Solution
8.3 H2-Air Near Equilibrium
Exercises
References
Idealized Solid Combustion........................
9.1 Simple Planar Model
9.1.1 Model Equations
9.1.2 Simple Planar Derivation
9.1.3 Ad Hoc Approximation
9.2 Nondimensionalization
9.2.1 Final Form
9.2.2 Integral Form
9.2.3 Infinite Damkohler Limit
9.3 Steady Solutions
9.3.1 High-Activation-Energy Asymptotics
9.3.2 Method of Weighted Residuals
9.3.3 Steady Solution with Reactant Depletion
9.4 Unsteady Solutions
9.4.1 Linear Stability
9.4.2 Full Transient Solution
Exercises
References
Premixed Laminar Flame............................
10.1 Governing Equations
10.1.1 Evolution Equations
10.1.2 Constitutive Models
10.1.3 Alternate Forms
10.1.4 Equilibrium Conditions
10.2 Steady Burner-Stabilized Flames
10.2.1 Formulation
10.2.2 Solution Procedure
10.2.3 Detailed H2-Air Kinetics
Exercises
References
Oscillatory Combustion............................
11.1 Gray-Scott Mechanism
11.1.1 Spatially Homogeneous
11.1.2 Spatial Variations and Pattern Formation
11.2 H2-Air Mechanism
Exercises
References
Detonation........................................
12.1 Reactive Euler Equations
12.1.1 One-Step Irreversible Kinetics
Contents
ix
12.1.2 Sound Speed and Thermicity 377
12.1.3 Parameters for H2-Air 377
12.1.4 Conservative Form 378
12.1.5 Nonconservative Form 379
12.1.6 One-Dimensional Form 381
12.1.7 Characteristic Form 383
12.1.8 Rankine-Hugoniot Jump Conditions 387
12.1.9 Galilean Transformation 389
12.2 One-Dimensional, Steady Solutions 391
12.2.1 Steady Shock Jumps 392
12.2.2 Ordinary Differential Equations of Motion 392
12.2.3 Rankine-Hugoniot Analysis 395
12.2.4 Shock Solutions 400
12.2.5 Equilibrium Solutions 401
12.2.6 ZND Solutions: One-Step Irreversible Kinetics 404
12.2.7 Detonation Structure: Two-Step Irreversible Kinetics 409
12.2.8 Detonation Structure: Detailed H2-Air Kinetics 420
12.3 Nonlinear Dynamics and Transition to Chaos 422
12.3.1 One-Step Kinetics, With and Without Diffusion 423
12.3.2 Detailed Kinetics, With and Without Diffusion 433
12.4 Closing Comments 448
Exercises 448
References 448
Author Index 453
Subject Index 456
Combustion Thermodynamics and Dynamics builds
on a foundation of thermal science, chemistry, and
undergraduate aerospace, mechanical, and chemical
engineers to give a first-year graduate level exposition
of the thermodynamics, physical chemistry, and
dynamics of advection-reaction-diffusion. Special
effort is made to link notions of time-independent
classical thermodynamics with time-dependent reactive
fluid dynamics. In particular, concepts of classical
thermochemical equilibrium and stability are discussed
in the context of modern nonlinear dynamical systems
theory. The first half emphasizes time-dependent
spatially homogeneous reaction, while the second half
considers effects of spatially inhomogeneous advection
and diffusion on the reaction dynamics. Attention is
focused on systems with realistic detailed chemical
kinetics as well as simplified kinetics. Many mathematical
details are presented, and several quantitative examples
given. Topics include foundations of thermochemistry,
reduced kinetics, reactive Navier-Stokes equations,
reaction-diffusion systems, laminar flame, oscillatory
combustion, and detonation.
Joseph M. Powers is a professor in the
Department of Aerospace and Mechanical
Engineering at the University of Notre Dame.
His research uses computational science to
consider the dynamics of high-speed reactive
fluids, especially as it applies to verification and
validation of complex multiscale systems. He
has held positions at the NASA Lewis Research
Center, the Air Force Research Laboratory,
the Los Alamos National Laboratory, and the
Chinese Academy of Sciences. He is editor-
in-chief of the AlAA s Journal of Propulsion
and Power, an Associate Fellow of AIAA, and
a member of APS, ASME, the Combustion
Institute, and SIAM. He is the recipient of
numerous teaching awards.
ISBN 978-1-107-06745-5
|
any_adam_object | 1 |
author | Powers, Joseph M. |
author_facet | Powers, Joseph M. |
author_role | aut |
author_sort | Powers, Joseph M. |
author_variant | j m p jm jmp |
building | Verbundindex |
bvnumber | BV043651798 |
classification_rvk | VE 6000 |
ctrlnum | (OCoLC)958163613 (DE-599)BVBBV043651798 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02073nam a2200457 c 4500</leader><controlfield tag="001">BV043651798</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170421 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160701s2016 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107067455</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-107-06745-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)958163613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043651798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6000</subfield><subfield code="0">(DE-625)147131:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Powers, Joseph M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combustion thermodynamics and dynamics</subfield><subfield code="c">Joseph M. Powers, University of Notre Dame</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 464 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combustion / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermodynamics / Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029065388</subfield></datafield></record></collection> |
id | DE-604.BV043651798 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:41:38Z |
institution | BVB |
isbn | 9781107067455 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029065388 |
oclc_num | 958163613 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | XII, 464 Seiten Illustrationen, Diagramme |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Powers, Joseph M. Combustion thermodynamics and dynamics Combustion / Mathematical models Thermodynamics / Mathematics Combustion / Mathematical models fast Thermodynamics / Mathematics fast Mathematik Mathematisches Modell Mathematisches Modell (DE-588)4114528-8 gnd Verbrennung (DE-588)4062656-8 gnd Thermodynamik (DE-588)4059827-5 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4062656-8 (DE-588)4059827-5 |
title | Combustion thermodynamics and dynamics |
title_auth | Combustion thermodynamics and dynamics |
title_exact_search | Combustion thermodynamics and dynamics |
title_full | Combustion thermodynamics and dynamics Joseph M. Powers, University of Notre Dame |
title_fullStr | Combustion thermodynamics and dynamics Joseph M. Powers, University of Notre Dame |
title_full_unstemmed | Combustion thermodynamics and dynamics Joseph M. Powers, University of Notre Dame |
title_short | Combustion thermodynamics and dynamics |
title_sort | combustion thermodynamics and dynamics |
topic | Combustion / Mathematical models Thermodynamics / Mathematics Combustion / Mathematical models fast Thermodynamics / Mathematics fast Mathematik Mathematisches Modell Mathematisches Modell (DE-588)4114528-8 gnd Verbrennung (DE-588)4062656-8 gnd Thermodynamik (DE-588)4059827-5 gnd |
topic_facet | Combustion / Mathematical models Thermodynamics / Mathematics Mathematik Mathematisches Modell Verbrennung Thermodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029065388&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT powersjosephm combustionthermodynamicsanddynamics |