An elementary introduction to statistical learning theory:
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Kulkarni, Sanjeev (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Hoboken, N.J. Wiley ©2011
Schriftenreihe:Wiley series in probability and statistics
Schlagwörter:
Links:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=391376
Beschreibung:Introduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting
"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover
Includes bibliographical references and index
Umfang:1 Online-Ressource (1 volume)
ISBN:9781118023471
1118023471
9781118023433
1118023439
1283098687
9781283098687
9780470641835
9781118023464
0470641835
1118023463