Big data beyond the hype: a guide to conversations for today's data center
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
New York [u.a.]
Mc Graw Hill Education
2015
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027729120&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXXIV, 356 S. Ill., graph. Darst. |
ISBN: | 9780071844659 0071844651 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042291972 | ||
003 | DE-604 | ||
005 | 20150224 | ||
007 | t| | ||
008 | 150127s2015 xx ad|| |||| 00||| eng d | ||
020 | |a 9780071844659 |9 978-0-07-184465-9 | ||
020 | |a 0071844651 |9 0-07-184465-1 | ||
035 | |a (OCoLC)903584967 | ||
035 | |a (DE-599)GBV815781822 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-473 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Zikopoulos, Paul |e Verfasser |0 (DE-588)1027383017 |4 aut | |
245 | 1 | 0 | |a Big data beyond the hype |b a guide to conversations for today's data center |c Paul Zikopoulos ... |
264 | 1 | |a New York [u.a.] |b Mc Graw Hill Education |c 2015 | |
300 | |a XXXIV, 356 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027729120&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027729120 |
Datensatz im Suchindex
_version_ | 1819381112350179328 |
---|---|
adam_text | CONTENTS
AT A GLANCE
PARTI
Opening Conversations About Big Data
1
Getting Hype out or the Way: Big Data and Beyond
.... 3
2
To SQL or Not to SQL: That s Not the Question,
It s the Era of Polyglot Persistence
................. 31
3
Composing Cloud Applications:
Why We Love the Bluemix and the IBM Cloud
...... 59
4
The Data Zones Model:
A New Approach to Managing Data
................ 97
PART II
Watson Foundations
5
Starting Out with a Solid Base:
A Tour of Watson Foundations
.................... 123
6
Landing Your Data in Style with Blue Suit Hadoop:
InfoSphere Biglnsights
........................... 131
7
In the Moment Analytics: InfoSphere Streams
....... 179
8 700
Million Times Faster Than the Blink of an Eye:
BLU
Acceleration
................................ 209
9
An Expert Integrated System for Deep Analytics
....... 249
10
Build More, Grow More, Sleep More: IBM Cloudant
.... 269
ix
PART III
Calming the Waters: Big Data Governance
11
Guiding Principles
ror
Data Governance
.............. 303
12
Security Is NOT an Afterthought
.................... 309
13
Big Data Lifecycle Management
..................... 329
14
Matching at Scale: Big Match
........................ 343
CONTENTS
Foreword
.............................................. xix
Acknowledgments
..................................... xxi
Introduction
........................................... xxiii
PART I
Opening Conversations About Big Data
Getting Hype out
oř
the Way: Big Data and Beyond
.... 3
There s Gold in Them There Hills!
.................. 3
Why Is Big Data Important?
......................... 5
Brought to You by the Letter V:
How We Define Big Data
....................... 8
Cognitive Computing
.............................. 12
Why Does the Big Data World
Need Cognitive Computing?
.................... 15
A Big Data and Analytics
Plattorm
Manifesto
........... 17
1.
Discover, Explore, and Navigate Big Data Sources
.... 18
2.
Land, Manage, and Store
Huge Volumes of Any Data
...................... 20
3.
Structured and Controlled Data
.................... 21
4.
Manage and Analyze Unstructured Data
............ 22
5.
Analyze Data in Real Time
........................ 24
6.
A Rich Library of Analytical Functions and Tools
..... 24
7.
Integrate and Govern All Data Sources
.............. 26
Cognitive Computing Systems
27
Of Cloud and Manifestos
............................. 27
Wrapping It Up
....................................... 28
To SQL or Not to SQL: That s Not the Question,
It s the Era of Polyglot Persistence
................... 31
Core Value Systems: What Makes
a NoSQL Practitioner Tick
............................ 33
What Is NoSQL?
...................................... 36
Is
HadiHłp
a NoSQL Database?
....................... 38
Xl
xii Contents
Different Strokes for Different Folks:
The NoSQL Classification System
......................
39
Give Me a Key, I ll Give You a Value:
The Key/Value Store
..............................
39
The Grand-Daddy of Them All: The Document Store
----- 40
Column Family, Columnar Store, or
BigTable Derivatives: What Do We Call You?
......... 46
Don t Underestimate the Underdog: The Graph Store
... 47
From ACID to CAP
................................... 54
CAP Theorem and a Meatloaf Song:
Two Out
oř
Three Ain t Bad
...................... 55
Let Me Get This Straight:
There Is SQL, NoSQL, and Now NewSQL?
............ 57
Wrapping It Up
....................................... 58
Composing Cloud Applications: Why We
Love the Bluemix and the IBM Cloud
.............. 59
At Your Service: Explaining
Cloud Provisioning Models
........................... 61
Sotting a Foundation for the Cloud:
Infrastructure as a Service
............................ 64
IaaS for Tomorrow...Available Today:
IBM SortLayer Powers the IBM Cloud
............... 67
Noisy Neighbors Can Be Bad Neighbors:
The Multitcnant Cloud
............................ 69
Building the Developer s Sandbox
with Platform as a Service
............................ 71
If You Have Only a Couple of Minutes:
PaaS and IBM Bluemix in a Nutshell
................. 71
Digging Deeper into PaaS
........................... 74
Being Social on the Cloud: How Bluemix
Integrates Platforms and Architectures
............. 76
Understanding the Hybrid Cloud:
Playing Frankenstein Without the Horror
............ 77
Tried and Tested: How
Déployable
Patterns Simplify PaaS
. . . .......................... 79
Composing the Fabric of Cloud Services: IBM Bluemix
..... 82
Parting Words on Platform as a Service
................ 85
Consuming Functionality Without the Stress:
Software as
a Senice
...................
g5
The Cloud Bazaar: SaaS and the API Economy
......... 87
Demolishing the Barrier to Entry for
Cloud-Ready Analytics: IBM s dashDB
................ 89
Contents xiii
Build More, Grow More, Know More:
dashDB s Cloud SaaS
.............................. 92
Refinery as a Service
................................ 93
Wrapping It Up
....................................... 94
4
The Data Zones Model:
A New Approach to Managing Data
................ 97
Challenges with the Traditional Approach
................ 100
Agility
............................................ 100
Cost
.............................................. 101
Depth of Insight
.................................... 102
Next-Generation Information Management Architectures
.... 103
Prepare for Touchdown: The Landing Zone
............ 104
Into the Unknown: The Exploration Zone
............. 105
Into the Deep: The Deep Analytic Zone
............... 108
Curtain Call: The New Staging Zone
.................. 109
You Have Questions? We Have Answers!
The Queryable Archive Zone
....................... 112
In Big Data We Trust: The Trusted Data Zone
.......... 115
A Zone for Business Reporting
....................... 115
From Forecast to Nowcast:
The Real-Time Processing and Analytics Zone
........ 116
Ladies and Gentlemen, Presenting...
The Data Zones Model
............................. 1
IS
PART II
Watson Foundations
5
Starting Out with a Solid Base:
A Tour of Watson Foundations
.................... 123
Overview or Watson Foundations
....................... 124
A Continuum of Analytics Capabilities:
Foundations for Watson
............................ 126
β
Landing Your Data in Style with Blue Suit Hadoop:
InfoSphere Biglnsights
........................... 131
Where Do Elephants Come From: What Is Hadoop?
....... 133
A Brief History or Hadoop
........................... 135
Components of Hadoop and Related Projects
136
Open Source, and Proud of It
137
Making Analytics on Hadoop
Fasy
141
xiv Contents
The Real Deal for SQL on Hadoop: Big SQL
............ 142
Machine Learning for the Masses:
Big
R
and SystemML
.............................. 147
The Advanced Text Analytics Toolkit
................. 149
Data Discovery and Visualization: BigSheets
........... 152
Spatiotemporal
Analytics
............................ 154
Finding Needles in Haystacks of Needles:
Indexing and Search in Biglnsights
.................. 155
Cradle-to-Grave Application
Development Support
................................ 155
The Biglnsights Integrated
Development Environment
......................... 156
The Biglnsights Application Lifecycle
................. 157
An App Store for Hadoop: Easy Deployment and
Execution of Custom Applications
.................. 159
Keeping the Sandbox Tidy:
Sharing and Managing Hadoop
....................... 160
The Biglnsights Web Console
........................ 160
Monitoring the Aspects of Your Cluster
............... 161
Securing the Biglnsights for Hadoop Cluster
........... 162
Adaptive MapReduce
............................... 163
A Flexible File System for Hadoop: GPFS-FPO
......... 164
Playing Nice: Integration with
Other Data Center Systems
........................... 167
IBM InfoSphere System
z
Connector for Hadoop
....... 168
IBM PureData System for Analytics
................... 168
InfoSphere Streams for Data in Motion
................ 169
InfoSphere Information Server
for Data Integration
............................... 170
Matching at Scale with Big Match
.................... 170
Securing Hadoop with Guardium and
Optim
.......... 171
Broad Integration Support
........................... 171
Deployment Flexibility
........................ 172
Biglnsights Editions: Free, Low-Cost,
and Premium Offerings
................... 172
A Low-Cost Way to Get Started:
Running Biglnsights on the Cloud
.................. 174
Higher-Class Hardware:
Power and System
z
Support
............. 176
Contents xv
Get Started Quickly!
................................... 177
Wrapping It Up
....................................... 177
7
In the Moment Analytics: InfoSphere Streams
....... 179
Introducing Streaming Data Analysis
.................... 179
How InfoSphere Streams Works
........................ 181
A Simple Streams Application
....................... 182
Recommended Uses for Streams
..................... 184
How Is Streams Different from CEP Systems?
.......... 184
Stream Processing Modes: Preserve Currency
or Preserve Each Record
........................... 185
High Availability
................................... 185
Dynamically Distributed Processing
.................. 187
InfoSphere Streams Platform Components
............... 188
The Streams Console
............................... 188
An Integrated Development Environment
for Streams: Streams Studio
........................ 191
The Streams Processing Language
.................... 145
Source and Sink Adapters
........................... 198
Analytical Operators
................................ 194
Streams Toolkits
................................... 202
Solution
Accelera
tors
............................... 205
Use Cases
............................................ 205
Get Started Quickly!
................................... 207
Wrapping It Up
....................................... 207
8 700
Million Times Faster Than the Blink or an Eye:
BLU
Acceleration
................................ 209
What Is
BLU
Acceleration7
............................. 214
What D<h»s a Next Generation
Databast1
Service for Analytics Look Like?
.................... 214
Seamlessly Integrated
............................... 217
Hardware Optimized
............................... 217
Convince Me to Take
BLU
Acceleration
for a Test Drive
......................................
21S
Pedal Uy the Floor: How Fa>t Is
BLU
Acceleration1
...... 219
From Minimized to Minuscule:
BLU
Acceleration Compression K*itu>s
220
Where Will I Use
BLU
Acceleration?
..................... 222
xvi Contents
How
BLU
Acceleration
Carne
to Be:
Seven Big Ideas
.....................................
Big Idea
#1:
KISS It.
.................................
225
Big Idea
#2.
Actionable Compression
and Computer-Friendly Encoding
................... 226
Big Idea
#3:
Multiplying the Power of the CPU
......... 229
Big Idea
#4:
Parallel Vector Processing
................ 231
Big Idea
#5:
Get Organized...by Column
.............. 232
Big Idea
#6:
Dynamic In-Memory Processing
........... 234
Big Idea
#7:
Data Skipping
........................... 236
How Seven Big Ideas Optimize the Hardware Stack
.... 237
The Sum of All Big Ideas:
BLU
Acceleration in Action
... 238
DB2 with
BLU
Acceleration Shadow Tables:
When OLTP
+ OLAP = 1
DB ..........................
241
What Lurks in These Shadows Isn t Anything
to Be Scared of: Operational Reporting
............... 241
Wrapping It Up
....................................... 246
9
An Expert Integrated System for Deep Analytics
....... 249
Before We Begin: Bursting into the Cloud
................ 252
Starting on the Whiteboard: Netezza s Design Principles
. . . 253
Appliance Simplicity: Minimize the Human Effort
...... 254
Process Analytics Closer to the Data Store
............. 254
Balanced
+
MPP
=
Linear Scalability
.................. 255
Modular Design: Support Flexible
Configurations and Extreme Scalability
.............. 255
What s in the Box? The Netezza Appliance
Architecture Overview
............................... 256
A Look Inside a Netezza Box
......................... 257
How a Query Runs in Netezza
....................... 261
How Netezza Is a Platform for Analytics
.............. 264
Wrapping It Up
....................................... 266
10
Build More, Grow More, Sleep More: IBM Cloudant
____ 269
Cloudant: White Glove Database as a Service
........... 271
Where Did Cloudant Roll in From?
................... 276
Cloudant or Hadoop?
....................... 278
Being Flexible:
Schemas
with JSON
................ 279
Cloudant Clustering: Scaling for the Cloud
............ 279
Contents xvii
Avoiding
Mongo-Size
Outages: Sleep Soundly
with Cloudant Replication
............................ 281
Cloudant Sync Brings Data to a Mobile World
.......... 283
Make Data, Not War: Cloudant
Versioning
and Conflict Resolution
.............................. 284
Unlocking
GIS Data
with Cloudant Geospatial
............ 287
Cloudant Local
....................................... 289
Here on In: For Techies
................................. 290
For Techies: Leveraging the Cloudant Primary Index
.... 290
Exploring Data with Cloudant s
Secondary Index Views
.......................... 292
Performing Ad Hoc Queries with
the Cloudant Search Index
......................... 293
Parameters That Govern a Logical Cloudant Database
.... 294
Remember! Cloudant Is DBaaS
....................... 298
Wrapping It Up
....................................... 299
PART III
Calming the Waters: Big Data Governance
11
Guiding Principles for Data Governance
.............. 303
The IBM Data Governance Council Maturity Model
....... 304
Wrapping It Up
....................................... 308
12
Security Is NOT an Afterthought
.................... 304
Security Big Data: How It s Different
....................
3I0
Securing Big Data in Hadoop
........................... 313
Culture, Definition, Charter, Foundation,
and Data Governance
............................. 314
What Is Sensitive Data?
............................. 31
Я
The Masquerade Gala: Masking Sensitive Data
......... 316
Don t Break the DAM: Monitoring
and Controlling Access to Data
..................... 323
Protecting Data at Rest
.............................. 325
Wrapping It Up
.......................................
32h
13
Big Data Lifecycle Management
..................... 324
A Foundation for Data Governance:
The Information Governance Catalog
330
Data on Demand: Data Click
........................... 333
xviii Contents
Data Integration ...................................... 334
Data
Quality
......................................... 337
Veracity
as a
Service: IBM Data Works .................... 338
Managing Your
Test Data:
Optim
Test Data Management ... 341
A Retirement Home for Your Data:
Optim
Data Archive
.... 341
Wrapping It Up
....................................... 342
14
Matching at Scale: Big Match
........................ 343
What Is Matching Anyway?
............................ 344
A Teaser: Where Are You Going to Use Big Match?
...... 345
Matching on Hadoop
............................... 346
Matching Approaches
.............................. 347
Big Match Architecture
................................ 348
Big Match Algorithm Configuration Files
.............. 349
Big Match Applications
............................. 350
HBase Tables
...................................... 350
Probabilistic Matching Engine
....................... 350
How It Works
........................................ 351
Extract
............................................ 352
Search
............................................ 352
Applications for Big Match
............................. 353
Enabling the Landing Zone
.......................... 353
Enhanced
360-
Degree View of Your Customers
......... 353
More Reliable Data Exploration
...................... 354
Large-Sea
le
Searches for Matching Records
............ 355
Wrapping It Up
....................................... 356
|
any_adam_object | 1 |
author | Zikopoulos, Paul |
author_GND | (DE-588)1027383017 |
author_facet | Zikopoulos, Paul |
author_role | aut |
author_sort | Zikopoulos, Paul |
author_variant | p z pz |
building | Verbundindex |
bvnumber | BV042291972 |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)903584967 (DE-599)GBV815781822 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01291nam a2200325 c 4500</leader><controlfield tag="001">BV042291972</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150224 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">150127s2015 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780071844659</subfield><subfield code="9">978-0-07-184465-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0071844651</subfield><subfield code="9">0-07-184465-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903584967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV815781822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zikopoulos, Paul</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027383017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data beyond the hype</subfield><subfield code="b">a guide to conversations for today's data center</subfield><subfield code="c">Paul Zikopoulos ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Mc Graw Hill Education</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIV, 356 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027729120&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027729120</subfield></datafield></record></collection> |
id | DE-604.BV042291972 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:06:58Z |
institution | BVB |
isbn | 9780071844659 0071844651 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027729120 |
oclc_num | 903584967 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG |
owner_facet | DE-473 DE-BY-UBG |
physical | XXXIV, 356 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Mc Graw Hill Education |
record_format | marc |
spellingShingle | Zikopoulos, Paul Big data beyond the hype a guide to conversations for today's data center Big Data (DE-588)4802620-7 gnd |
subject_GND | (DE-588)4802620-7 |
title | Big data beyond the hype a guide to conversations for today's data center |
title_auth | Big data beyond the hype a guide to conversations for today's data center |
title_exact_search | Big data beyond the hype a guide to conversations for today's data center |
title_full | Big data beyond the hype a guide to conversations for today's data center Paul Zikopoulos ... |
title_fullStr | Big data beyond the hype a guide to conversations for today's data center Paul Zikopoulos ... |
title_full_unstemmed | Big data beyond the hype a guide to conversations for today's data center Paul Zikopoulos ... |
title_short | Big data beyond the hype |
title_sort | big data beyond the hype a guide to conversations for today s data center |
title_sub | a guide to conversations for today's data center |
topic | Big Data (DE-588)4802620-7 gnd |
topic_facet | Big Data |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027729120&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zikopoulospaul bigdatabeyondthehypeaguidetoconversationsfortodaysdatacenter |