Materials design inspired by nature: function through inner architecture
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
RSC Publ.
2013
|
Schriftenreihe: | RSC smart materials
4 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XVIII, 402 S. Ill., graph. Darst. |
ISBN: | 9781849735537 1849735530 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040979206 | ||
003 | DE-604 | ||
005 | 20140416 | ||
007 | t| | ||
008 | 130502s2013 xx ad|| |||| 00||| eng d | ||
015 | |a GBB2A2702 |2 dnb | ||
020 | |a 9781849735537 |9 978-1-84973-553-7 | ||
020 | |a 1849735530 |9 1-84973-553-0 | ||
035 | |a (OCoLC)856797803 | ||
035 | |a (DE-599)BVBBV040979206 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-Aug4 |a DE-703 |a DE-573 | ||
084 | |a UQ 8200 |0 (DE-625)146589: |2 rvk | ||
084 | |a VE 9670 |0 (DE-625)147161:253 |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a WD 2350 |0 (DE-625)148165: |2 rvk | ||
084 | |a ZH 3090 |0 (DE-625)156110: |2 rvk | ||
245 | 1 | 0 | |a Materials design inspired by nature |b function through inner architecture |c ed. by Peter Fratzl ... |
264 | 1 | |a Cambridge |b RSC Publ. |c 2013 | |
300 | |a XVIII, 402 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a RSC smart materials |v 4 | |
650 | 4 | |a Smart materials | |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoffkunde |0 (DE-588)4079184-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionswerkstoff |0 (DE-588)4841224-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bionik |0 (DE-588)4006888-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intelligenter Werkstoff |0 (DE-588)4274825-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bionik |0 (DE-588)4006888-2 |D s |
689 | 0 | 1 | |a Werkstoffkunde |0 (DE-588)4079184-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bionik |0 (DE-588)4006888-2 |D s |
689 | 1 | 1 | |a Funktionswerkstoff |0 (DE-588)4841224-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Bionik |0 (DE-588)4006888-2 |D s |
689 | 2 | 1 | |a Intelligenter Werkstoff |0 (DE-588)4274825-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Bionik |0 (DE-588)4006888-2 |D s |
689 | 3 | 1 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 3 | 2 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Fratzl, Peter |d 1958- |0 (DE-588)136277993 |4 edt | |
830 | 0 | |a RSC smart materials |v 4 |w (DE-604)BV040628641 |9 4 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025957239 |
Datensatz im Suchindex
_version_ | 1819273583446196224 |
---|---|
adam_text | Contents
Chapter
1
Architecture*) Materials: An Alternative to Microstructure
Control for Structural Materials Design? A Possible
Playground for Bio-inspiration?
1
Yves J. M.
Brechet
1.1
Introduction: Materials, Structure and Between
1
1.2
Examples of Engineering Architectured Materials
5
1.2.1
An Acoustic Absorber
5
1.2.2
A Radiant Burner
7
1.3
The Case for Bio-inspired Architectured Materials
9
1.4
Examples of Bio-inspiration
10
1.4.1
Challenge
1 :
Combine Strength, Ductility and
Toughness
11
1.4.2
Challenge
2:
Design a Stiff Sandwich Structure
which can be Stamped and still Absorb
Vibrations, while being Easy to Weld
11
1.4.3
Challenge
3:
Design a High-temperature
Material that is both Flexible and Damage
Tolerant
12
1.5
The Stumbling Block: Processes
13
1.6
Conclusions
15
Acknowledgement
15
References
15
Chapter
2
Bone Structural Adaptation and WohTs Law
17
Bettina
Willie,
Georg
N.
Duda
and Richard Weinkamer
2.1
Introduction
17
RSC Smart Materials No.
4
Materials Design Inspired by Nature: Function through Inner Architecture
Edited by Peter Fratzl, John W. C. Dunlop and Richard Weinkamer
©
The Royal Society of Chemistry
2013
Published by the Royal Society of Chemistry, www.rsc.org
ix
Contents
2.2
Mediano
Transduction in Bone
20
2.2.1
Bone (Re)Modelling and the Effector Cell
Response
20
2.2.2
Mechanical-Biochemical Coupling
21
2.2.3
Signal Transmission
22
2.3
The Mechanical Loading of Bone in the Living
Organism
25
2.4
The Structural Response of Bone: Controlled Animal
Experiments
28
2.5
In Silico Experiments of the Control of
Bone Remodelling
31
2.6
The Inversion of Wolff s Law: Conclusions on
Locomotor
Behaviour
34
2.7
Conclusions and Outlook
35
Acknowledgements
36
References
37
Chapter
3
Understanding Hierarchy and Functions of Bone Using
Scanning X-ray Scattering Methods
46
Wolfgang Wagermaier, Aurelien Gourrier and
Barbara Aichmayer
3.1
Introduction
46
3.1.1
Motivation and Objective
46
3.1.2
X-ray Scattering Applied to the Study of
Biological Materials
47
3.1.3
Bone as a Model for a Hierarchically
Structured Material
48
3.2
Bone Materials at the Nanoscale
49
3.2.1
Basic Principles of X-ray Scattering
49
3.2.2
Nanocrystal Structure in Bone: WAXS
50
3.2.3
Mineral Particle Size and Organization in the
Collagen Matrix: SAXS
52
3.2.4
SAXS and WAXS of Precursor Phases Found
in Bone
56
3.3
Understanding Specific Bone Functions by
Investigating the Nanostructure in Combination with
other Methods
57
3.3.1
Multi-Scale and Multi-physics Approach
57
3.3.2
Combining X-ray Scattering and Mechanical
Testing
59
3.4
Revealing the Nanoscale Properties of Bone Tissues
and Organs: Scanning SAXS/WAXS Imaging
61
3.4.1
Probing Hierarchy by Scanning
61
Contents xi
3.4.2 Digital Image Processing
of q-sSAXSI
67
3.4.3
Scanning
versus
Full-field SAXS Imaging
69
References
70
Chapter
4
Advanced
Transmission Electron Microscopy to
Explore Early Stages of Bio(mimetic)mineralization
74
Ar
с
han
Dey and
Nico
A. J. M.
Sommerdijk
4.1
Introduction:
from Biomineralization to Biomimetic
Materials Science
74
4.1.1
Mechanisms of Biomineralization
76
4.1.2
Bio(mimetic)mineralization
76
4.1.3
New Insights in Early Stages of
Bio(mimetic)mineralization
80
4.2
Advanced Transmission Electron Microscopy
83
4.2.1
Electron Diffraction and High-resolution
Lattice Imaging
83
4.2.2
Spectroscopy and Elemental Analysis
85
4.2.3
Electron Tomography
85
4.2.4
Cryogenic Transmission Electron Microscopy
86
4.3
Application to Bio(mimetic)mineralization
87
4.3.1
Monitoring the Biomimetic Formation
of Calcium Carbonate
87
4.3.2
Mineralization Pathways in Calcium
Phosphate
91
4.4
Future Perspectives of Advanced Transmission
Electron Microscopy
96
4.4.1
High-resolution Lattice Imaging in Cryogenic
Transmission Electron Microscopy
96
4.4.2
Liquid Cell Transmission Electron Microscopy
98
4.5
Conclusions
99
Acknowledgement
100
References
101
Chapter
5
Collagen-based
Matériák
for Tissue Repair, from
Bio-inspired to Biomimetic
107
M. M. Giraud
Guille
, N. N
assi/
and
F. M.
Fernandes
5.1
Introduction
107
5.2 Collagen:
Ambiguities and Goals
108
5.2.1
Terminology
108
5.2.2
Multi-scale Organization
110
5.2.3
Handling Collagen in Vitro
110
5.2.4
Structure-Function Relationships
112
xii
Contents
5.3
Isotropie
Architecture of Triple Helices and Fibrils
112
5.3.1
Collagen Sponges
112
5.3.2
Collagen
Hydrogels
114
5.3.3
Cross-linked Collagen Matrices and
Application Forms
115
5.3.4
Collagen-based Composites
115
5.4 Anisotropie
Architecture of Fibrils
119
5.4.1
Biomimetic Networks
119
5.4.2
Dense Collagen Films and Patchwork of Dense
Matrices
120
5.5
Conclusions
122
Acknowledgements
122
References
122
Chapter
6
Materials Design Inspired by Tree and Wood Architecture
128
Ingo Burgert
6.1
Introduction
128
6.2
Trees and Wood as Biological Concept
Generators
129
6.3
Source of Bio-inspiration along the Hierarchical
Organization of Wood
130
6.3.1
Process of Cell Wall Formation
131
6.3.2
Composite Design of Cell Wall Architecture
133
6.3.3
Cell Wall Pre-stresses and Reaction Wood
136
6.3.4
Wood Tissues: Optimized Lightweight
Structures
138
6.4
Bio-inspiration from Adaptive Growth
138
6.4.1
Adaptation of Geometry
139
6.4.2
Adaptation of Inner Architecture (Wood)
140
6.4.3
Inter-relation of Tree Geometry and Material
Adaptation
141
6.5
Wood: from Biological Material to Engineering
Material
142
6.5.1
Improving Wood Performance
143
6.5.2
Biomimetic Approaches
143
References
145
Chapter
7
Raman Microscopy: Insights into the Chemistry and
Structure of Biological Materials
151
N.
Gierlinger,
С
Reisecker,
S. Hilâ
and
S.
Gamsjaeger
7.1
Introduction
151
Contents xiii
7.2 Basic
Principles and
Instrumentation 152
7.2.1
Techniques for Signal Enhancement and
Circumvention of Fluorescence: Resonance
Raman Spectroscopy, Surface-enhanced
Raman Spectroscopy and Coherent
Anti-stokes Scattering
154
7.2.2
Spatial Resolution and Tip-enhanced Raman
Spectroscopy
154
7.2.3
Raman Approaches for Imaging
155
7.2.4
Processing of Raman Spectra and Image
Generation
156
7.2.5
Interpretation of Raman Spectra: Structure,
Arrangement and Deformation of
Molecules
158
7.3
Insights into Cellulosic Materials: Plants, Fibres
and Composites
159
7.3.1
Raman Spectra of Plant Cell Wall
Polymers
159
7.3.2
Imaging Plant Cell Wall Composition in
Context with Structure
161
7.3.3
Cellulose Fibres and Composites under Load
163
7.4
Biological
Chitin Nanocomposites
and
Biomineralization
163
7.4.1
Raman Spectra of
Chitin
and Crystalline and
Amorphous Calcium Carbonate
164
7.4.2
Revealing the Composition of the Cuticle
of Two Different Isopod Species Living in
Different Habitats by Raman Imaging
166
7.4.3
Shrimp and Mollusc Shells, Sponges:
White Spot Formation and Deformation
168
7.5
Elucidating the Structure of Proteins and
Mechanisms of Hardening
168
7.5.1
Molecular Structure of Spider
Silk Proteins
168
7.5.2
Keratinous Proteins in Human Hairs
169
7.5.3
Hardening of Byssal Threads by
Catecholato-iron Chelate Complexes
170
7.6
Tendon and Bone: Probing Composition, Collagen
Orientation and Deformation
170
7.6.1
Raman Spectra of Bone: Orientation Versus
Composition
171
7.6.2
Bone and Tendons under Mechanical Load
172
7.7
Conclusions and Outlook
173
Acknowledgements
173
References
173
xiv
Contents
Chapter
8
The Mineralized Crustacean Cuticle: Hierarchical Structure
and Mechanical Properties
180
Oskar
Paris,
Markus
A. Hartmann
and Gerhard
Fritz-Popovski
8.1
Introduction
180
8.2
Structure of Crustacean Cuticle
182
8.2.1
Hierarchical Structure of the Unmineralized
Cuticle
182
8.2.2
Moulting and Mineralization
183
8.2.3
Hierarchical Structure of the Mineralized
Cuticle
184
8.3
Mechanical Properties
187
8.3.1
Mechanical Properties of the Single
Constituents
188
8.3.2
Crustacean Cuticle as a Gradient Material
189
8.3.3
The Influence of Mineralization on Mechanical
Properties
190
8.3.4
The Role of Water
192
8.3.5
Cuticle Failure Mechanisms
193
8.4
Conclusion and Outlook
193
References
194
Chapter
9
Multi-scale Modelling of a Biological Material:
The Arthropod Exoskeleton
197
Martin
Friåk,
Helge-Otto
Fabritius, Svetoslav Nikolov,
Michal Petrov,
Liverios Lymperakis,
Christoph
Sachs,
Pavlina
Elstnerová,
Jörg Neugebauer and Dierk Raabe
9.1
Introduction
197
9.2
Experimental Prerequisites
199
9.2.1
Determination of Structural Hierarchy
199
9.2.2
Determination of Mechanical Properties
201
9.3
Multi-scale Modelling and Robustness Testing
202
9.3.1
Concept of Representative Volume
Elements
203
9.3.2
Sub-nanoscale
Ab Initio
Modelling
205
9.3.3
Compositional Variations
207
9.3.4
Multi-scale Hierarchical Methods
208
9.3.5
Structural Variations
212
9.4
Conclusions and Outlook
213
9.5
Appendix:
Ab
Initio Methods
215
Acknowledgements
216
References
216
Contents xv
Chapter
10
Optical Biomimetics
219
Andrew
R.
Parker
10.1
Introduction
219
10.2
The Evolution and Variety of Natural Photonic
Devices
220
10.3
Engineering of Anti-reflectors
222
10.4
Engineering of Iridescent Devices
223
10.5
Cell Culture
226
10.6
Diatoms and Coccolithophores
227
10.7
Iridoviruses
231
10.8
The Mechanisms of Natural Engineering and Future
Research
232
Acknowledgements
233
References
233
Chapter
11
Magnetic Nanoparticles in Bacteria
235
Maria
Antonietta
Carillo,
Peter Vach and Damien Faivre
11.1
Introduction
23 5
11.2
Phylogeny, Morphology, Physiology and Ecology of
Magnetotactic Bacteria
237
11.3
Ultrastructure
of Magnetosomes
238
11.4
Magnetosome Size and Morphology
239
11.4.1
Magnetosome Membrane and Protein
Sorting
239
11.4.2
Control of Magnetosome Size
242
1
Î
.4.3
Control of Magnetosome Morphology
243
11.4.4
Effect of Size and Morphology on
Magnetism
244
11.5
Magnetosome Chain
246
11.5.1
Biological Determinants of Chain Formation
246
11.5.2
Magnetism of Magnetic Particles Organized
in a Chain
248
11.5.3 Magnetotaxis 249
11.6
Conclusion
250
Acknowledgements
250
References
250
Chapter
12
Hierarchical Protein Assemblies as a Basis for Materials
256
Andrew Smith and Thomas
Scheibel
12.1
Introduction
256
12.2
Extracorporeal Hierarchical Fibres
257
xvi
Contents
12.3
Silks
257
12.3.1
Basic Silk Protein Nomenclature and
Architecture
259
12.4
Single Protein Silk Fibres
260
12.4.1
Flagelliform Silk
260
12.4.2
Aciniform Silk
262
12.5
Multiple Protein Silks
262
12.5.1
Lacewing Egg Stalk Silk
263
12.5.2
Major
Ampullate
Silk
264
12.5.3
Lepidoptera, Trichoptera: Moths, Butterflies
and Caddisflies
267
12.5.4
Bee/Hornet/Vespid Silk
270
12.6
Multicomponent Fibres
272
12.7
Pseudoflagelliform Silk and Cribellate Silk
273
12.8
Hair and Keratins
274
12.9
Conclusion
277
Acknowledgement
277
References
277
Chapter
13
Anti-adhesive Surfaces in Plants and Their Biomimetic
Potential
282
Elena V. Gorb and
Stanislav
N.
Gorb
13.1
Introduction
282
13.2
Attachment Devices in Insects
283
13.3
Anti-adhesive Plant Surfaces
284
13.3.1
Cell Shape and Orientation
284
13.3.2
Trichomes
286
13.3.3
Wet Coverage
288
13.3.4
Cuticular
Folds
290
13.3.5
Epicuticular Wax Crystals
292
13.3.6
Hierarchical Plant Surfaces
301
13.4
Biomimetic Potential
303
Acknowledgements
304
References
304
Chapter
14
Bio-inspired Adhesive Surfaces: From Principles to
Applications
310
Elmar
Kroner and
Eduard Arzt
14.1
Introduction
310
14.2
Gecko Adhesion: a Journey through Time
311
14.3
Adhesion System of Geckos
312
14.4
Understanding the Gecko Adhesion System
313
14.5
Theory of Gecko Adhesion
314
Contents xvii
14.6
Microfabrication Techniques
316
14.7 Smart
Fibrillar
Surfaces: Adhesives
of Tomorrow
318
14.7.1
Switchable Adhesives
318
14.7.2
Biomedical
Applications
319
14.7.3
Large-scale
Fabrication
319
14.8
Conclusion
319
References
319
Chapter
15
Replicating Biological Design Principles in Synthetic
Composites
322
André
R.
Studart, Rafael Libanori and Randall
M.
Erb
15.1
Introduction
322
15.2
Size of Reinforcing Particles
323
15.3
Aspect Ratio of Reinforcing Particles
327
15.4
Hierarchy
330
15.5
Local Reinforcement
333
15.6
Three-dimensional Reinforcement
337
15.7
Waviness and Surface Heterogeneities of
Reinforcing Platelets
341
15.8
Domain Unfolding in Modular Macromolecules
343
15.9
Swellable and Growing Matrices Reinforced
with Fibres
347
15.10
Modulated Local Elastic Properties
349
15.11
Conclusions and Outlook
352
References
353
Chapter
16
Bio-inspired Self-healing Materials
359
Thomas Speck,
Georg
Bauer, Felix Flues,
Katharina Oelker,
Markus
Ramp/, Andreas
С
Schussele,
Max
von
Tapavicza,
Jürgen
Ber t
ling,
Rolf Luchsinger, Anke Nellesen,
Annette M. Schmidt, Rolf Mülhaupt and Olga Speck
16.1
Bio-inspired Self-healing
Materials: an
Overview
359
16.1.1
Skin,
Gradient
and Multilayer
Formation 363
16.1.2
Self-repair Inspired by Wound Healing
363
16.1.3
Bio-inspired Stimuli-responsive Network
Systems
363
16.2
Bio-inspired Self-healing of Pneumatic Lightweight
Structures
364
16.2.1
Biological Role Models: Self-sealing and
Self-healing in Nature
364
16.2.2
Bio-inspired Self-healing: Transferring the
Biological Role Models to Pneumatic
Structures
368
xviii Contents
16.3
Bio-inspired Self-healing of Mechanically Highly
Loaded Elastomers
375
16.3.1
Biological Role Models: Latex as Self-sealing
and Self-healing Agent in Nature
375
16.3.2
Bio-inspired Self-healing of Elastomers
377
16.4
Discussion and Outlook
386
Acknowledgements
386
References
386
Subject Index
390
The inner architecture of a material can have an astonishing effect
on its overall properties and is vital to understand when designing
new materials. Nature is a master at designing hierarchical structures
and so researchers are looking at biological examples for inspiration,
specifically to understand how nature arranges the inner architectures
for a particular function in order to apply these design principles into
man-made materials.
Materials Design Inspired by Nature is the first book to address
the relationship between the inner architecture of natural materials
and their physical properties for materials design. The book explores
examples from plants, the marine world, arthropods and bacteria,
where the inner architecture is exploited to obtain specific mechanical,
optical or magnetic properties along with how these design principles
are used in man-made products. Details of the experimental methods
used to investigate hierarchical structures are also given.
Written by leading experts in bio-inspired materials research, this is
essential reading for anyone developing new materials.
і
of wood specimens by Dr.
Michaela
Eder,
Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
RSC Smart Materials
Series Editors:
Hans-Jörg
Schneider, Saarland University, Germany
Mohsen Shahinpoor, University or Maine, USA
The RSC Smart Materials series of books provides an authoritative
insight into smart materials research and their applications.
With contributions from leading experts, each book will highlight
the different material systems for advanced undergraduates,
postgraduates and researchers in
academia
and related industries,
both active and new to the field.
ISBN
978-1-84973-553-7
9
*781849»735537
RSC Publishing
www.rsc.org/smart
|
any_adam_object | 1 |
author2 | Fratzl, Peter 1958- |
author2_role | edt |
author2_variant | p f pf |
author_GND | (DE-588)136277993 |
author_facet | Fratzl, Peter 1958- |
building | Verbundindex |
bvnumber | BV040979206 |
classification_rvk | UQ 8200 VE 9670 VE 9850 WD 2350 ZH 3090 |
ctrlnum | (OCoLC)856797803 (DE-599)BVBBV040979206 |
discipline | Chemie / Pharmazie Physik Biologie Architektur |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02775nam a2200625 cb4500</leader><controlfield tag="001">BV040979206</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140416 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130502s2013 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB2A2702</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849735537</subfield><subfield code="9">978-1-84973-553-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1849735530</subfield><subfield code="9">1-84973-553-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856797803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040979206</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8200</subfield><subfield code="0">(DE-625)146589:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9670</subfield><subfield code="0">(DE-625)147161:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2350</subfield><subfield code="0">(DE-625)148165:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZH 3090</subfield><subfield code="0">(DE-625)156110:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materials design inspired by nature</subfield><subfield code="b">function through inner architecture</subfield><subfield code="c">ed. by Peter Fratzl ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publ.</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 402 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">RSC smart materials</subfield><subfield code="v">4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionswerkstoff</subfield><subfield code="0">(DE-588)4841224-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bionik</subfield><subfield code="0">(DE-588)4006888-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intelligenter Werkstoff</subfield><subfield code="0">(DE-588)4274825-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bionik</subfield><subfield code="0">(DE-588)4006888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bionik</subfield><subfield code="0">(DE-588)4006888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Funktionswerkstoff</subfield><subfield code="0">(DE-588)4841224-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bionik</subfield><subfield code="0">(DE-588)4006888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Intelligenter Werkstoff</subfield><subfield code="0">(DE-588)4274825-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Bionik</subfield><subfield code="0">(DE-588)4006888-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fratzl, Peter</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)136277993</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">RSC smart materials</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV040628641</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025957239</subfield></datafield></record></collection> |
id | DE-604.BV040979206 |
illustrated | Illustrated |
indexdate | 2024-12-20T16:28:34Z |
institution | BVB |
isbn | 9781849735537 1849735530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025957239 |
oclc_num | 856797803 |
open_access_boolean | |
owner | DE-11 DE-Aug4 DE-703 DE-573 |
owner_facet | DE-11 DE-Aug4 DE-703 DE-573 |
physical | XVIII, 402 S. Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | RSC Publ. |
record_format | marc |
series | RSC smart materials |
series2 | RSC smart materials |
spellingShingle | Materials design inspired by nature function through inner architecture RSC smart materials Smart materials Nanotechnologie (DE-588)4327470-5 gnd Werkstoffkunde (DE-588)4079184-1 gnd Funktionswerkstoff (DE-588)4841224-7 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Bionik (DE-588)4006888-2 gnd Intelligenter Werkstoff (DE-588)4274825-2 gnd |
subject_GND | (DE-588)4327470-5 (DE-588)4079184-1 (DE-588)4841224-7 (DE-588)4342626-8 (DE-588)4006888-2 (DE-588)4274825-2 |
title | Materials design inspired by nature function through inner architecture |
title_auth | Materials design inspired by nature function through inner architecture |
title_exact_search | Materials design inspired by nature function through inner architecture |
title_full | Materials design inspired by nature function through inner architecture ed. by Peter Fratzl ... |
title_fullStr | Materials design inspired by nature function through inner architecture ed. by Peter Fratzl ... |
title_full_unstemmed | Materials design inspired by nature function through inner architecture ed. by Peter Fratzl ... |
title_short | Materials design inspired by nature |
title_sort | materials design inspired by nature function through inner architecture |
title_sub | function through inner architecture |
topic | Smart materials Nanotechnologie (DE-588)4327470-5 gnd Werkstoffkunde (DE-588)4079184-1 gnd Funktionswerkstoff (DE-588)4841224-7 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Bionik (DE-588)4006888-2 gnd Intelligenter Werkstoff (DE-588)4274825-2 gnd |
topic_facet | Smart materials Nanotechnologie Werkstoffkunde Funktionswerkstoff Nanostrukturiertes Material Bionik Intelligenter Werkstoff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025957239&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040628641 |
work_keys_str_mv | AT fratzlpeter materialsdesigninspiredbynaturefunctionthroughinnerarchitecture |