Core maths for the biosciences:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2011
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021182972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXVIII, 576 S. Ill., graph. Darst. |
ISBN: | 9780199216345 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037269990 | ||
003 | DE-604 | ||
005 | 20191002 | ||
007 | t| | ||
008 | 110309s2011 xx ad|| |||| 00||| eng d | ||
020 | |a 9780199216345 |9 978-0-19-921634-5 | ||
035 | |a (OCoLC)729919033 | ||
035 | |a (DE-599)BVBBV037269990 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-M49 | ||
082 | 0 | |a 570.151 | |
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
084 | |a BIO 105f |2 stub | ||
084 | |a MAT 023f |2 stub | ||
100 | 1 | |a Reed, Martin B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Core maths for the biosciences |c Martin B. Reed |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2011 | |
300 | |a XXVIII, 576 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biowissenschaften |0 (DE-588)4129772-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Biowissenschaften |0 (DE-588)4129772-6 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021182972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021182972 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 1002 MAT 023f 2011 B 1930 |
---|---|
DE-BY-TUM_katkey | 1780262 |
DE-BY-TUM_location | 10 |
DE-BY-TUM_media_number | 040044121120 |
_version_ | 1821934952179040257 |
adam_text | Titel: Core maths for the biosciences
Autor: Reed, Martin B.
Jahr: 2011
Contents in full
The search for The Ultimate Answer xxi
Introduction: why and how to use this book xxii
Acknowledgements xxv
Technical notes: using the electronic support that accompanies this book xxvi
PART I ARITHMETIC, ALGEBRA, AND FUNCTIONS 1
1 Arithmetic and algebra 3
Case Study A1: Introduction to models of population growth 4
Case Study B1: Introduction to models of cancer 4
Case Study C1: Introduction to predator-prey relationships 5
1.1 Numerical and algebraic expressions 5
Case Study B2: Angiogenic cancer cells 6
1.2 The real numbers 7
1.2.1 Integers and reals 7
1.2.2 The real line 8
1.3 Arithmetic operations 9
1.3.1 Negation 9
1.3.2 Addition and subtraction 9
1.3.3 Multiplication and division 10
1.3.4 Absolute value 13
1.3.5 Percentages 14
1.3.6 Basic rules for manipulating equations 15
1.4 Brackets and the distributive law 16
1.4.1 How to use brackets 16
1.4.2 Rule of precedence 18
1.4.3 The distributive law 18
CONTENTS IN FULL
1.5 Exponents 19
1.5.1 Definition of exponents 19
1.5.2 Rules for exponents 20
Case study A2: Formula for geometric growth 22
1.5.3 Products and factors 22
1.6 Roots 23
1.6.1 Definition of roots 23
1.6.2 Roots and exponents 24
1.6.3 Irrational numbers 25
1.6.4 Surds 25
1.6.5 A third operation in manipulating equations 26
1.7 Evaluating expressions 26
1.7.1 Order of operations 27
1.7.2 Handling complex fractions 27
1.7.3 Numerical expressions in Excel 28
Case Study A3: Birth and death rates 30
Case Study B3: Evaluating the angiogenic cancer cell density 31
1.8 Extension: intervals and inequalities 32
1.8.1 Intervals on the real line 32
1.8.2 Inequalities 33
Case Study A4: Birth rate, death rate and extinction 35
Case Study B4: Conditions for angiogenic cell line extinction 36
Summary 37
Problems 38
Units; precision and accuracy 45
2.1 Scientific notation 46
2.1.1 Definition of scientific notation 46
2.1.2 Converting numbers between decimal and scientific notation 47
2.1.3 Performing addition and subtraction in scientific notation 48
2.1.4 Performing multiplication and division in scientific notation 49
2.1.5 An aside: floating point notation 49
2.2 SI units 50
2.2.1 Base, supplementary, and derived SI units 50
2.2.2 SI prefixes 53
Case Study C2: Velocity 54
2.2.3 More problems with SI units; units of volume 55
2.2.4 Non-SI units 56
2.3 Calculations using SI units 56
Case Study C3: Force and acceleration 57
2.4 Dimensional analysis 58
2.5 Rounding, precision, and accuracy 60
2.5.1 Rounding numbers 60
2.5.2 Significant figures 61
2.5.3 Uncertainty intervals 62
2.6 Extension: accuracy and errors 64
2.6.1 Errors in addition and subtraction 65
2.6.2 Errors in multiplication and division 66
2.6.3 Errors in exponentiation 68
2.6.4 Delta notation 71
Case Study A5: Error analysis for geometric growth 72
Summary 74
Problems 75
3 Data tables, graphs, interpolation 81
3.1 Constructing a data table and a data plot 82
3.1.1 Independent and dependent variables 82
3.1.2 Data plots 82
3.2 Drawing graphs 85
3.2.1 Three basic types of graph 85
3.2.2 Drawing graphs in Excel 86
3.3 Straight-line graphs: finding the slope 88
3.3.1 Direct proportion 89
3.3.2 Linear relationship 91
3.3.3 Calculating the slope 91
3.4 Inverse proportion 93
3.5 Application: allometry 94
3.6 Extension: interpolation 96
3.6.1 Performing interpolation by hand 96
3.6.2 Linear interpolation between two data values 97
3.6.3 Piecewise linear interpolation 99
3.6.4 Linear interpolation using Excel 101
Case Study A6: Cobwebbing 102
Problems 104
4 Molarity and dilutions 109
4.1 Basic concepts 109
4.1.1 Simple solutions 109
XJI CONTENTS IN FULL
4.1.2 Atomic mass 110
4.1.3 The mole 110
4.1.4 The molar mass of a substance 111
4.1.5 The molarity of a solution 112
4.1.6 Application: measurements of cholesterol level 113
4.2 Calculations involving moles and molarity 113
4.2.1 Calculating the number of moles in a sample 113
4.2.2 Calculating the molar mass of a compound 114
4.2.3 Calculating the molarity of a solution 114
4.2.4 Calculating the moles present in a sample of solution 115
4.2.5 Calculating the moles to add in making a solution 115
4.2.6 Calculating the mass to add in making a solution 116
4.3 Calculations for dilutions of solutions 116
4.3.1 Calculating the new concentration after diluting 116
4.3.2 Calculating how much to dilute to obtain a specific concentration 117
4.3.3 Serial dilutions 119
4.3.4 Application: serial dilution in homeopathy 120
4.4 Excel spreadsheets 121
Problems 122
5 Variables, functions, and equations 125
5.1 What is a function? 126
5.2 Some simple functions 127
5.2.1 Functions on your calculator, and in Excel 127
5.2.2 Direct and inverse proportionality functions 128
5.2.3 Quadratic functions, parameters 129
5.3 Creating tables of values in Excel 131
Case Study B5: Graphing the relationship in Excel 132
5.4 Manipulating equations 133
5.4.1 What is an equation? 133
5.4.2 Linear equations and their graphs 134
5.4.3 Rearranging linear equations 135
5.4.4 Equation of a circle 135
5.4.5 Rearranging more complicated equations 138
5.5 Graphs of the direct and inverse proportion functions 141
5.6 Algebra of functions 142
5.6.1 Changing the argument 142
5.6.2 Arithmetic operations with functions 143
5.6.3 Composition of functions (or function of a function ) 145
5.7 Extension: solving simultaneous linear equations 145
Problems 149
CONTENTS IN FULL
XIII
Linear functions and curve sketching
6.1 Graph sketching with FNGraph
6.2 Constant functions y= c
6.3 Linear functions
6.3.1 The identity function y = x
6.3.2 Proportionality functions y=mx
Case Study C4: Equations of motion 1
6.3.3 General linear functions y= mx+c
Case Study C5: A constant-velocity chase
6.3.4 Trend lines revisited: goodness of fit
6.4 Limits and asymptotes
6.4.1 Limits of functions
6.4.2 Horizontal asymptotes
6.4.3 Vertical asymptotes
6.4.4 Limits of sequences
6.5 Extension: linear transformations
6.5.1 Vertical stretch/squash/flip: y=a.f(x)
6.5.2 Vertical shift: y= f x) + d
6.5.3 Horizontal stretch/squash/flip: y= f(bx)
6.5.4 Horizontal shift: y= f(x-c)
Problems
151
152
155
156
156
157
159
159
164
165
166
166
167
168
168
169
171
171
171
171
173
7 Quadratic and polynomial functions 176
7.1 Simple quadratic functions 176
7.1.1 The squaring function: y=x2 176
7.1.2 The proportional to the square function: y= ax2 178
7.1.3 Adding a constant term: y= ax2 + d X79
7A.4 The shifted squaring function: y= a{x-a)2 180
7.2 General quadratic functions 181
7.2.1 The completed square form: y= a(x- a)2 + d 181
7.2.2 The polynomial form: y= ax2 + bx + c 184
Case Study C6: Equations of motion 2 189
Case Study A7: Fibonacci s Rabbits: geometric growth in a population
structured by age 191
7.2.3 Calculating the polynomial coefficients 192
7.2.4 Application: Reduction of cholesterol level 193
Case Study B6: Derivation of the equilibrium density 195
7.2.5 The factorized form: y= a x- a)(x- /3) 197
XIV CONTENTS IN FULL
7.3 Cubic and higher-degree polynomials 198
7.3.1 Power functions and geometric series 198
7.3.2 General properties of polynomial functions 201
7.3.3 Algebraic long division 201
7.4 Logistic growth 204
7.4.1 The logistic function 204
Case Study C7: Fisheries management 205
7.4.2 Logistic growth of populations 206
Case Study B7: Logistic growth of cancer cells 208
Case Study A8: Cobwebbing of logistic growth model 208
7.5 Extension: quadratic interpolation 210
Problems 213
8 Fitting curves; rational and inverse functions 220
8.1 Reciprocal functions 220
8.1.1 Definition of the reciprocal of f(x) 221
11 x
8.1.2 Rational functions y = -L, y =------r,V =------r 221
1 * ax + b ax + b
Case Study C8: A hyperbolic model of animal speed 223
8.2 General rational functions p(*} 224
8.2.1 Finding the x-intercepts 225
8.2.2 Finding the y-intercept 225
8.2.3 Finding the horizontal (and sloping) asymptotes 225
8.2.4 Finding the vertical asymptotes 226
8.2.5 Example of graph sketching 226
8.3 Fitting curves to data 227
8.3.1 Inverse proportion 228
8.3.2 Rational function y = ?^- 230
ax + b
8.3.3 Quadratic functions 230
8.3.4 Rational function v = ~ + b 231
x
8.4 Application: enzyme kinetics 231
8.4.1 The Michaelis-Menten equation 232
8.4.2 The Lineweaver-Burk transformation 233
8.4.3 Error analysis 234
8.4.4 Allosteric regulation 235
8.5 Inverse functions 237
8.5.1 Definition of the inverse of f(x) 237
8.5.2 The inverse of rational functions 238
8.6 Bracketing methods 239
8.6.1 Root-finding algorithms 241
8.6.2 Minimization algorithms 246
CONTENTS IN FULL J|y,
Case Study C9: Fisheries management: finding the Maximum Economic Yield 250
8.7 Extension: finding the equation of a trend line 251
Problems 255
9 Periodic functions 259
9.1 Sawtooth functions 259
9.1.1 Basic sawtooth function 259
9.1.2 Specifying the period and amplitude 261
9.1.3 Specifying the vertical shift and phase 262
9.2 Revision of school trigonometry 262
9.3 Measurement of angles in radians 265
9.4 The sine and cosine functions 268
9.5 Periodic functions of time 273
9.5.1 General sine and cosine functions 273
Case Study C10: A simple model of predator-prey population dynamics 274
9.5.2 Application: modelling tidal data 276
9.5.3 Application: modelling temperature variations 279
9.6 Reciprocal and inverse trigonometric functions 280
9.6.1 Reciprocal trigonometric functions 280
9.6.2 Inverse trigonometric functions 282
9.7 More trigonometric identities 283
9.8 The tangent function and the gradient of a curve 284
9.8.1 Definition of the tangent function 284
9.8.2 The tangent function and the slope of a line 284
9.8.3 The geometric tangent 285
9.8.4 An approximation to the gradient 287
Problems 289
10 Exponential and logarithmic functions 290
10.1 Exponential functions to the base a 290
10.1.1 Discrete and continuous models 290
10.1.2 Exponential function to the base a:y=a* 291
10.2 Exponential growth function y = Aekx 294
Case study A9: Exponential growth of populations 296
10.3 Logarithms 296
10.3.1 Definition of logarithms to base a 296
10.3.2 Laws of logarithms 298
10.3.3 Logarithms to base 2 299
10.3.4 Logarithms to base 10 (common logarithms) 300
10.3.5 Logarithms to base e (natural logarithms) 301
XVI CONTENTS IN FULL
10.4 Fitting exponential curves to data 302
10.4.1 Fitting an exponential growth model 303
10.4.2 Application: allometry 303
10.4.3 Application: allosteric regulation 305
10.5 Exponential decay 306
10.5.1 Exponential decay function: y=Ae-kx 307
Case Study C11: An exponential model of animal speed 309
10.5.2 Application: sensitization and habituation 309
10.5.3 Application: drug administration 310
10.5.4 Example: radiocarbon dating 311
Case study A10: An equation for logistic growth 312
10.6 Example: reduction of cholesterol level 314
10.7 Extension: a stochastic model of exponential decay 317
Case study All: Gompertz curve for population mortality 319
Problems 320
Revision Problems 328
Historical interlude: finding the roots of polynomials 331
PART II CALCULUS AND DIFFERENTIAL EQUATIONS 335
11 Instantaneous rate of change: the derivative 337
11.1 Introduction to the calculus 337
11.1.1 Differential calculus 338
11.1.2 Integral calculus 340
11.1.3 Differential equations 341
Case Study B8: Constructing the angiogenic tumour model 342
11.2 Definition of the derivative 344
11.3 Differentiating polynomial functions 347
11.3.1 The derivative of power functions y=x 348
11.3.2 Notation 351
11.3.3 The derivative of linear functions 351
11.3.4 The derivative of polynomial functions 352
Case Study C12: Differentiating the animal motion model 354
11.4 Differentiating roots and reciprocals 354
11.5 Differentiating functions of linear functions 355
11.6 Differentiating exponential functions 357
CONTENTS IN FULL XVH
11.7 Extension: small changes and errors 360
Case Study CI3: Deriving the exponential model of animal speed 360
Case Study A12: Differential equation for exponential growth 362
Problems 363
12 Rules of differentiation 366
12.1 Differentiable functions 366
12.2 The chain rule 367
12.3 The product and quotient rules 370
12.3.1 The product rule 370
12.3.2 The quotient rule 372
Case Study C14: Deriving the hyperbolic model of animal speed 376
12.4 Differentiating trigonometric functions 376
12.5 Implicit differentiation 379
12.6 Differentiating logarithmic functions 381
12.7 Differentiating inverse trigonometric functions 382
12.8 Higher-order derivatives 383
12.9 Summary of standard derivatives, and rules of differentiation 386
Problems 387
13 Applications of differentiation 389
13.1 Interpretation of graphs 389
13.1.1 Gradients 391
13.1.2 Roots 392
13.1.3 Critical points 393
13.1.4 Curvature 395
Case study A13: Analysing the Ricker update equation 397
13.1.5 Summary 398
Case study A14: The point of inflection in the logistic growth curve 402
13.2 Optimization 403
13.2.1 Optimization in the biosciences 403
13.2.2 One-dimensional unconstrained optimization 404
Case study C15: Fisheries management: using calculus to find the
Maximum Economic Yield 406
13.2.3 Application: tubular bones 407
13.3 Related rates 411
13.4 Polynomial approximation of functions 413
XViH CONTENTS IN FULL
13.4.1 Linear approximation of f x) around x = 0 414
13.4.2 Quadratic approximation of f x) around x = 0 416
13.4.3 Maclaurin series expansions of functions 417
13.4.4 Taylor series expansions of functions 418
13.5 Extension: numerical methods for finding roots and critical points 419
13.5.1 Newton-Raphson method for finding roots 420
13.5.2 Newton s method for optimization 423
Problems 424
14 Techniques of integration 426
14.1 The integral as anti-derivative 426
14.1.1 Definition and notation 427
14.1.2 The integrals of power functions, and the coefficient rule 428
14.1.3 The sum rule, and the integrals of polynomial functions 430
14.1.4 Integrals of some standard functions 432
Case study C16: Integrating the hyperbolic and exponential models 433
of animal speed
14.2 Integration by substitution 435
14.3 Integration by parts 438
Case study A15: Solving the differential equation for exponential growth 439
14.4 Integration by partial fractions 441
14.5 Integrating trigonometric functions 444
14.5.1 The general sine and cosine functions 444
14.5.2 The tangent function 444
14.5.3 Powers of sines and cosines 445
14.5.4 Integrating fcos x 446
14.5.5 Integrating inverse trigonometric functions 447
14.6 Extension: integration using power series approximations 448
14.7 Summary of standard integrals 449
Problems 450
15 The definite integral 451
15.1 The integral as area under the curve 451
15.1.1 The link between the integral and area 451
15.1.2 Speed-time graphs 452
15.1.3 Definition of the definite integral 453
15.2 The integral as limit of a sum 458
15.2.1 The Riemann integral 458
15.2.2 Application: chemotherapy drug delivery 460
15.2.3 Application: laminar blood flow 462
CONTENTS IN FULL xJX
15.3 Using techniques of integration with definite integrals 465
15.3.1 Integration by substitution 465
15.3.2 Integration by parts 466
15.3.3 Integration by partial fractions 467
15.4 Improper integrals 468
15.5 Extension: numerical integration 470
15.5.1 The trapezium rule 470
15.5.2 Simpson s rule 473
15.5.3 Using Simpson s rule with data-sets 476
Problems 479
16 Differential equations I 481
16.1 Overview of differential equations 481
16.1.1 Order of a differential equation 482
16.1.2 Boundary conditions 482
16.1.3 ODEsandPDEs 484
16.2 Solution by separation of variables 484
16.2.1 Right-hand side a function of x only 484
16.2.2 Right-hand side a function of y only 486
16.2.3 Variables separable 489
Case Study B9: The Gompertz model of tumour growth 490
Case Study A16: Solving the ODE for logistic growth 492
Case Study CI 7: A harvesting model for fish stocks 494
16.2.4 Change of variable 496
Case Study B10: The Gompertz model revisited 497
16.3 Linear first-order ODEs 499
16.4 Extension: partial differentiation 500
16.4.1 Reducing a PDE to an ODE 501
16.4.2 Error analysis in several variables 503
16.4.3 Minimization in two variables 504
Problems 505
17 Differential equations II 509
17.1 Numerical methods for first-order ODEs 509
17.1.1 Euler s method 510
17.1.2 Heun s method 515
Case Study C18: Numerical solution of fish harvesting model 518
17.1.3 Runge-Kutta method RK4 519
XX CONTENTS IN FULL
17.2 Systems of first-order ODEs 519
17.2.1 Lotka-Volterra models of predator-prey dynamics 520
17.2.2 Kermack-McKendrick model of epidemics 526
Case Study A17: The peak of an epidemic 527
17.3 Extension: analytic solutions 529
17.3.1 Solving second-order ODEs 529
17.3.2 Solving first-order systems 531
17.3.3 Solving partial differential equations 532
17.3.4 Further reading 534
Problems 534
18 Extension: dynamical systems 537
18.1 The butterfly effect 537
18.1.1 The birth of a new science 538
18.1.2 Numerical experiments 538
18.2 Equilibria and stability 542
18.2.1 Points of equilibrium for differential equations 542
18.2.2 Stability of equilibria for differential equations 543
Case Study C19: Analysing the equilibria of the harvesting model 547
18.2.3 Stability of equilibria for update equations 549
18.2.4 Numerical experiments with the update equation 551
18.3 Bifurcations... 553
18.4 ... and Chaos 557
18.5 Postscript 559
Problems 561
Answers to odd-numbered problems 563
Appendix: The Greek alphabet 570
References 571
Index 573
|
any_adam_object | 1 |
author | Reed, Martin B. |
author_facet | Reed, Martin B. |
author_role | aut |
author_sort | Reed, Martin B. |
author_variant | m b r mb mbr |
building | Verbundindex |
bvnumber | BV037269990 |
classification_rvk | WC 7000 |
classification_tum | BIO 105f MAT 023f |
ctrlnum | (OCoLC)729919033 (DE-599)BVBBV037269990 |
dewey-full | 570.151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.151 |
dewey-search | 570.151 |
dewey-sort | 3570.151 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01432nam a2200385 c 4500</leader><controlfield tag="001">BV037269990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191002 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110309s2011 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199216345</subfield><subfield code="9">978-0-19-921634-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)729919033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037269990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-M49</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reed, Martin B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Core maths for the biosciences</subfield><subfield code="c">Martin B. Reed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 576 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biowissenschaften</subfield><subfield code="0">(DE-588)4129772-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biowissenschaften</subfield><subfield code="0">(DE-588)4129772-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021182972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021182972</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV037269990 |
illustrated | Illustrated |
indexdate | 2024-12-20T14:48:04Z |
institution | BVB |
isbn | 9780199216345 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021182972 |
oclc_num | 729919033 |
open_access_boolean | |
owner | DE-11 DE-M49 DE-BY-TUM |
owner_facet | DE-11 DE-M49 DE-BY-TUM |
physical | XXVIII, 576 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford Univ. Press |
record_format | marc |
spellingShingle | Reed, Martin B. Core maths for the biosciences Mathematik (DE-588)4037944-9 gnd Biowissenschaften (DE-588)4129772-6 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4129772-6 (DE-588)4151278-9 |
title | Core maths for the biosciences |
title_auth | Core maths for the biosciences |
title_exact_search | Core maths for the biosciences |
title_full | Core maths for the biosciences Martin B. Reed |
title_fullStr | Core maths for the biosciences Martin B. Reed |
title_full_unstemmed | Core maths for the biosciences Martin B. Reed |
title_short | Core maths for the biosciences |
title_sort | core maths for the biosciences |
topic | Mathematik (DE-588)4037944-9 gnd Biowissenschaften (DE-588)4129772-6 gnd |
topic_facet | Mathematik Biowissenschaften Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021182972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT reedmartinb coremathsforthebiosciences |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Weihenstephan
Signatur: |
1002 MAT 023f 2011 B 1930
Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |