Information theory, inference, and learning algorithms:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 9. printing |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020774035&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Umfang: | XII, 628 S. Ill., graph. Darst. |
ISBN: | 9780521642989 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV036858214 | ||
003 | DE-604 | ||
005 | 20121015 | ||
007 | t| | ||
008 | 101208s2010 xxkad|| |||| 00||| eng d | ||
020 | |a 9780521642989 |9 978-0-521-64298-9 | ||
035 | |a (OCoLC)650811697 | ||
035 | |a (DE-599)BVBBV036858214 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-92 |a DE-703 |a DE-19 |a DE-473 |a DE-824 | ||
084 | |a AN 93000 |0 (DE-625)6753: |2 rvk | ||
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a MacKay, David J. C. |d 1967-2016 |e Verfasser |0 (DE-588)173311342 |4 aut | |
245 | 1 | 0 | |a Information theory, inference, and learning algorithms |c David J. C. MacKay |
250 | |a 9. printing | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XII, 628 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Inferenz |g Künstliche Intelligenz |0 (DE-588)4333533-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informationstheorie |0 (DE-588)4026927-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Informationstheorie |0 (DE-588)4026927-9 |D s |
689 | 0 | 1 | |a Inferenz |g Künstliche Intelligenz |0 (DE-588)4333533-0 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020774035&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020774035 |
Datensatz im Suchindex
_version_ | 1819274713949536256 |
---|---|
adam_text | Contents
Preface
.............................
v
1
Introduction
to Information Theory
............. 3
2
Probability. Entropy, and Inference
.............. 22
3
More about Inference
..................... 48
I Data Compression
...................... 65
4
The Source Coding Theorem
................. 67
5
Symbol Codes
......................... 91
6
Stream Codes
.......................... 110
7
Codes for Integers
....................... 132
II Noisy-Channel Coding
.................... 137
8
Dependent Random Variables
. . ............... 138
9
Communication over a Noisy Channel
............ 146
10
The Noisy-Channel Coding Theorem
............. 162
11
Error-Correcting Codes and Real Channels
......... 177
III Further Topics in Information Theory
............. 191
12
Hash Codes: Codes for Efficient Information Retrieval
. . 193
13
Binary Codes
......................... 206
14
Very Good Linear Codes Exist
................ 229
15
Further Exercises on Information Theory
.......... 233
16
Message Passing
........................ 241
17
Communication over Constrained Noiseless Channels
. . . 248
18
Crosswords and Codebreaking
................ 260
19
Why have Sex? Information Acquisition and Evolution
. . 269
IV Probabilities and Inference
.................. 281
20
An Example Inference Task: Clustering
........... 284
21
Exact Inference by Complete Enumeration
......... 293
22
Maximum Likelihood and Clustering
............. 300
23
Useful Probability Distributions
............... 311
24
Exact Marginalization
..................... 319
25
Exact Marginalization in Trellises
.............. 324
26
Exact Marginalization in Graphs
............... 334
27
Laplace s Method
....................... 341
28
Model
Comparison and Occam s Razor
........... 343
29
Monte Carlo Methods
..................... 357
30
Efficient Monte Carlo Methods
................ 387
31
Ising Models
.......................... 400
32
Exact Monte Carlo Sampling
................. 413
33
Variational Methods
...................... 422
34
Independent Component Analysis and Latent Variable Mod¬
elling
.............................. 437
35
Random Inference Topics
................... 445
36
Decision Theory
........................ 451
37
Bayesian Inference and Sampling Theory
.......... 457
V Neural networks
........................ 467
38
Introduction to Neural Networks
............... 468
39
The Single Neuron as a Classifier
............... 471
40
Capacity of a Single Neuron
.................. 483
41
Learning as Inference
..................... 492
42
Hopfield Networks
....................... 505
43
Boltzmaiin Machines
...................... 522
44
Supervised Learning in Multilayer Networks
......... 527
45
Gaussian Processes
...................... 535
46
Deconvolution
......................... 549
VI Sparse Graph Codes
..................... 555
47
Low-Density Parity-Check Codes
.............. 557
48
Convolut
ional Codes and Turbo Codes
............ 574
49
Repeat- Accumulate Codes
.................. 582
50
Digital Fountain Codes
.................... 589
VII
Appendices
.......................... 597
A Notation
............................ 598
В
Some Physics
.......................... 601
С
Some Mathematics
....................... 605
Bibliography
............................. 613
Index
................................. 620
|
any_adam_object | 1 |
author | MacKay, David J. C. 1967-2016 |
author_GND | (DE-588)173311342 |
author_facet | MacKay, David J. C. 1967-2016 |
author_role | aut |
author_sort | MacKay, David J. C. 1967-2016 |
author_variant | d j c m djc djcm |
building | Verbundindex |
bvnumber | BV036858214 |
classification_rvk | AN 93000 ST 130 ST 300 |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)650811697 (DE-599)BVBBV036858214 |
discipline | Allgemeines Informatik |
edition | 9. printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01801nam a2200433zc 4500</leader><controlfield tag="001">BV036858214</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121015 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">101208s2010 xxkad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521642989</subfield><subfield code="9">978-0-521-64298-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)650811697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036858214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AN 93000</subfield><subfield code="0">(DE-625)6753:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">MacKay, David J. C.</subfield><subfield code="d">1967-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173311342</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information theory, inference, and learning algorithms</subfield><subfield code="c">David J. C. MacKay</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">9. printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 628 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inferenz</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4333533-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Informationstheorie</subfield><subfield code="0">(DE-588)4026927-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inferenz</subfield><subfield code="g">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4333533-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020774035&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020774035</subfield></datafield></record></collection> |
id | DE-604.BV036858214 |
illustrated | Illustrated |
indexdate | 2024-12-20T14:43:24Z |
institution | BVB |
isbn | 9780521642989 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020774035 |
oclc_num | 650811697 |
open_access_boolean | |
owner | DE-92 DE-703 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-824 |
owner_facet | DE-92 DE-703 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-824 |
physical | XII, 628 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spellingShingle | MacKay, David J. C. 1967-2016 Information theory, inference, and learning algorithms Inferenz Künstliche Intelligenz (DE-588)4333533-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Informationstheorie (DE-588)4026927-9 gnd |
subject_GND | (DE-588)4333533-0 (DE-588)4193754-5 (DE-588)4026927-9 |
title | Information theory, inference, and learning algorithms |
title_auth | Information theory, inference, and learning algorithms |
title_exact_search | Information theory, inference, and learning algorithms |
title_full | Information theory, inference, and learning algorithms David J. C. MacKay |
title_fullStr | Information theory, inference, and learning algorithms David J. C. MacKay |
title_full_unstemmed | Information theory, inference, and learning algorithms David J. C. MacKay |
title_short | Information theory, inference, and learning algorithms |
title_sort | information theory inference and learning algorithms |
topic | Inferenz Künstliche Intelligenz (DE-588)4333533-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Informationstheorie (DE-588)4026927-9 gnd |
topic_facet | Inferenz Künstliche Intelligenz Maschinelles Lernen Informationstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020774035&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mackaydavidjc informationtheoryinferenceandlearningalgorithms |