The finite element method in heat transfer and fluid dynamics:
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press, Taylor & Francis
2010
|
Ausgabe: | 3rd ed. |
Schriftenreihe: | CRC series in computational mechanics and applied analysis
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018962916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXIII, 500 S. Ill., graph. Darst. |
ISBN: | 9781420085983 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036071647 | ||
003 | DE-604 | ||
005 | 20140613 | ||
007 | t| | ||
008 | 100310s2010 xx ad|| |||| 00||| eng d | ||
020 | |a 9781420085983 |9 978-1-4200-8598-3 | ||
035 | |a (OCoLC)633998573 | ||
035 | |a (DE-599)BVBBV036071647 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-83 |a DE-M347 | ||
082 | 0 | |a 620.106 | |
084 | |a UG 2500 |0 (DE-625)145618: |2 rvk | ||
084 | |a MTA 309f |2 stub | ||
084 | |a MTA 009f |2 stub | ||
100 | 1 | |a Reddy, Junuthula Narasimha |d 1945- |e Verfasser |0 (DE-588)108393232 |4 aut | |
245 | 1 | 0 | |a The finite element method in heat transfer and fluid dynamics |c J. N. Reddy ; D. K. Gartling |
250 | |a 3rd ed. | ||
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press, Taylor & Francis |c 2010 | |
300 | |a XXIII, 500 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a CRC series in computational mechanics and applied analysis | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 1 | 1 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Gartling, David K. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018962916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-018962916 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0702 MTA 009f 2010 B 2538(3) |
---|---|
DE-BY-TUM_katkey | 1739938 |
DE-BY-TUM_location | 07 |
DE-BY-TUM_media_number | 040071450181 040071450170 040071336251 |
_version_ | 1821933013152301056 |
adam_text | Contents
Preface
to the Third Edition
..........................................xvii
Preface to the Second Edition
.........................................xix
Preface to the First Edition
............................................xxi
About the Authors
.....................................................xxiii
1.
Equations of Heat Transfer and Fluid Mechanics
................1
1.1
Introduction
............................................................1
1.1.1
Heat Transfer
.....................................................1
1.1.2
Fluid Mechanics
..................................................2
1.2
Present Study
..........................................................3
1.3
Mathematical Preliminaries
.............................................3
1.3.1
Vectors and Tensors
...............................................3
1.3.2
Index Notation and Summation Convention
.......................5
1.3.3
The Del Operator and Calculus of Vectors and Tensors
............7
1.4
Governing Equations of a Continuum
..................................10
1.4.1
Introduction
.....................................................10
1.4.2
Conservation of Mass; the Continuity Equation
...................10
1.4.3
Conservation of Momenta
........................................11
1.4.4
Conservation of Energy
..........................................12
1.4.5
Equation of State
................................................13
1.4.6
Constitutive Equations
...........................................14
1.4.7
Divergence and Advection Forms
.................................15
1.5
Governing Equations in Terms of Primitive Variables
..................16
1.5.1
Vector Form
.....................................................16
1.5.2
Cartesian Component Form
......................................17
1.5.3
Cylindrical Component Form
....................................17
1.5.4
Closure
..........................................................19
1.6
Porous Flow Equations
................................................19
1.7
Low-Speed Compressible Flow Equations
..............................20
1.8
Auxiliary Transport Equations
........................................22
1.9
Chemically Reacting Systems
..........................................23
1.10
Boundary Conditions
..................................................26
1.10.1
Viscous Flow Boundary Conditions
.............................26
1.10.2
Porous Flow Boundary Conditions
..............................29
1.10.3
Thermal and Transport Boundary Conditions
...................30
1.10.4
Initial Conditions
...............................................31
Vlil
CONTENTS
1.11
Change
of
Phase
......................................................32
1.12
Enclosure
Radiation
...................................................34
1.13
Summary of Equations
................................................36
Problems
.................................................................37
References for Additional Reading
.........................................40
2.
The Finite Element Method
........................................43
2.1
Introduction
..........................................................43
2.2
Model Differential Equation
...........................................44
2.3
Finite Element Approximation
.........................................45
2.4
Weighted-Integral Statements and Weak Forms
........................47
2.4.1
Preliminary Comments
...........................................47
2.4.2
Weak Form Development
........................................47
2.5
Finite Element Model
.................................................50
2.6
Interpolation Functions
................................................52
2.6.1
Properties of Approximation Functions
...........................52
2.6.2
Linear Triangular Element
.......................................52
2.6.3
Linear Rectangular Element
......................................54
2.6.4
Evaluation of Boundary Integrals
.................................55
2.7
Assembly of Elements
.................................................55
2.8
Time-Dependent Problems
............................................58
2.8.1
Introduction
.....................................................58
2.8.2
Semidiscretization
...............................................58
2.8.3
Temporal Approximation
........................................60
2.9
Axisymmetric Problems
...............................................61
2.10
Library of Finite Elements
............................................63
2.10.1
Introduction
....................................................63
2.10.2
Triangular Elements
............................................63
2.10.3
Rectangular Elements
...........................................65
2.11
Numerical Integration
.................................................66
2.11.1
Preliminary Comments
.........................................66
2.11.2
Coordinate Transformations
....................................68
2.11.3
Integration over a Master Rectangular Element
..................70
2.11.4
Integration over a Master Triangular Element
...................71
2.12
Modeling Considerations
..............................................72
2.12.1
Mesh Generation
...............................................72
2.12.2
Representation of Boundary Flux
...............................74
2.12.3
Imposition of Boundary Conditions
.............................74
2.13
Illustrative Examples
..................................................75
2.13.1
Example
1......................................................76
2.13.1.1
Problem description
....................................76
2.13.1.2
Solution by linear triangular elements
...................77
2.13.1.3
Solution by linear rectangular elements
.................79
2.13.1.4
Discussion of the results
................................79
CONTENTS
IX
2.13.2
Example
2......................................................81
2.13.3
Example
3......................................................82
Problems
.................................................................83
References for Additional Reading
.........................................86
3.
Conduction Heat Transfer
..........................................87
3.1
Introduction
..........................................................87
3.2
Semidiscrete
Finite Element Model
....................................88
3.3
Interpolation Functions
................................................90
3.3.1
Preliminary Comments
...........................................90
3.3.2
Hexahedral (Brick) Elements
.....................................91
3.3.3
Tetrahedral Elements
............................................92
3.3.4
Prism Elements
..................................................93
3.3.5
Pyramid Elements
...............................................94
3.4
Numerical Integration
.................................................95
3.5
Computation of Surface Flux
..........................................96
3.6
Semidiscrete
Finite Element Model
....................................99
3.7
Solution of Nonlinear Equations
......................................100
3.7.1
Preliminary Comments
.........................................100
3.7.2
Steady-State Problems
..........................................100
3.7.3
Transient Problems
.............................................102
3.7.3.1
General formulation
.....................................102
3.7.3.2
Predictor-corrector methods
.............................105
3.7.3.3
Time step control
.......................................106
3.7.3.4
Initialization
............................................107
3.7.3.5
Linear multi-step methods
...............................107
3.7.3.6
Convergence and stability
...............................108
3.7.3.7
Mode superposition methods
............................
Ill
3.8
Radiation Solution Algorithms
.......................................113
3.9
Variable Properties
...................................................118
3.9.1
Temperature-Dependent Properties
.............................118
3.9.2
Phase Change Properties
.......................................119
3.9.3 Anisotropie
Properties
..........................................121
3.10
Post-Processing Operations
...........................................122
3.10.1
Heat Flux
.....................................................122
3.10.2
Heat Flow Function
...........................................124
3.11
Advanced Topics in Conduction
......................................125
3.11.1
Introduction
...................................................125
3.11.2
Specialty Elements
............................................126
3.11.3
Computational Boundary Conditions
...........................129
3.11.3.1
Contact boundary conditions
..........................129
3.11.3.2
Multipoint constraints
................................132
3.11.3.3
Partially covered surfaces
.............................133
3.11.4
Bulk Nodes
....................................................134
3.11.5
Reactive Materials
.............................................136
CONTENTS
3.11.6 Material Motion...............................................138
3.12
Example
Problems...................................................139
3.12.1
Introduction
...................................................139
3.12.2 Element
Convergence
..........................................139
3.12.3
Conduction/Radiation Solution
................................141
3.12.4
Temperature-Dependent Conductivity
..........................143
3.12.5 Anisotropie
Conductivity
......................................143
3.12.6
One-Dimensional Stefan Problem
..............................145
3.12.7
Drag Bit Analysis
.............................................147
3.12.8
Brazing and Welding Analysis
.................................149
3.12.9
Investment Casting
............................................152
Problems
................................................................154
References for Additional Reading
........................................155
4.
Flows of Viscous Incompressible Fluids
.........................161
4.1
Introduction
.........................................................161
4.1.1
Background
.....................................................161
4.1.2
Governing Equations
............................................161
4.2
Mixed Finite Element Model
.........................................164
4.2.1
Weak Form
.....................................................164
4.2.2
Finite Element Model
...........................................165
4.3
Penalty Finite Element Models
.......................................167
4.3.1
Introduction
....................................................167
4.3.2
Penalty Function Method
.......................................168
4.3.3
Reduced Integration Penalty Model
.............................171
4.3.4
Consistent Penalty Model
.......................................171
4.4
Finite Element Models of Porous Flow
................................172
4.5
Computational Considerations
........................................174
4.5.1
Properties of the Matrix Equations
..............................174
4.5.2
Choice of Interpolation Functions
...............................175
4.5.2.1
Quadrilateral elements (2-D)
............................176
4.5.2.2
Triangular elements (2-D)
...............................179
4.5.2.3
Hexahedral elements
(3-D)...............................179
4.5.2.4
Tetrahedral elements
(3-D)..............................180
4.5.3
Evaluation of Element Matrices in Penalty Models
..............180
4.5.4
Pressure Calculation
............................................181
4.5.5
Traction Boundary Conditions
..................................184
4.6
Solution of Nonlinear Equations
......................................186
4.6.1
General Discussion
..............................................186
4.6.2
Fully Coupled Solution Methods
................................189
4.6.2.1
Picard
method
..........................................189
4.6.2.2
Newton s method
........................................190
4.6.2.3
Modified and
quasi-Newton
methods
....................192
4.6.2.4
Continuation methods
...................................192
4.6.3
Pressure Correction/Projection Methods
........................194
CONTENTS Xl
4.7 Time-Approximation
Schemes
........................................196
4.7.1
Preliminary Comments
.........................................196
4.7.2
Forward/Backward
Euler
Schemes
..............................197
4.7.3
Adams-Bashforth/Trapezoid Rule
..............................198
4.7.4
Implicit Integration and Time Step Control
.....................198
4.7.5
Explicit Integration
.............................................199
4.8
Stabilized Methods
...................................................200
4.8.1
Preliminary Comments
.........................................200
4.8.2
Galerkin/Least-Squares Formulation
............................202
4.8.3
Polynomial Pressure Projection
.................................204
4.8.4
Variational Multiscale Methods
.................................205
4.9
Least-Squares Finite Element Models
.................................212
4.9.1
Introduction
....................................................212
4.9.2
Governing Equations
............................................215
4.9.3
Least-Squares Formulation
......................................216
4.9.4
Finite Element Model
...........................................217
4.9.5
Computational Aspects
.........................................218
4.10
Post-Processing
......................................................219
4.10.1
Stress Computation
............................................219
4.10.2
Stream Function Computation
.................................221
4.10.3
Particle Tracking
..............................................223
4.11
Free Surface Flows
...................................................224
4.11.1
Preliminary Comments
........................................224
4.11.2
Time-Independent Free Surfaces
...............................224
4.11.3
Time-Dependent Free Surfaces
.................................229
4.12
Turbulence
...........................................................235
4.12.1
Preliminary Comments
........................................235
4.12.2
Governing Equations
..........................................236
4.12.3
General Turbulence Models
....................................237
4.12.3.1
Correlations
..........................................238
4.12.3.2
Integral methods
......................................238
4.12.3.3
One-point closure
.....................................238
4.12.3.4
Two-point closure
.....................................238
4.12.3.5
Large eddy simulation
................................238
4.12.3.6
Direct numerical simulations (DNS)
...................239
4.12.4
One-Point Closure Turbulence Models
.........................239
4.12.4.1
Zero-equation model
..................................240
4.12.4.2
One-equation model
..................................240
4.12.4.3
Two-equation model
..................................241
4.12.5
Finite Element Modeling of Turbulence
........................242
4.12.5.1
Zero-equation model
..................................242
4.12.5.2
Two-equation model
..................................243
4.12.6
Variational Multiscale (VMS) Turbulence Modeling
............244
4.13
Numerical Examples
.................................................247
4.13.1
Preliminary Comments
........................................247
4.13.2
Fluid Squeezed between Parallel Plates
........................248
Xli CONTENTS
4.13.3
Flow of a Viscous Lubricant in a Slider Bearing
................250
4.13.4
Wall-Driven 2-D Cavity Flow
..................................252
4.13.5
Wall-Driven
3-D
Cavity Flow
..................................254
4.13.6
Evaluation of the
EBE
Iterative Solvers
........................256
4.13.7
Backward Facing Step
.........................................258
4.13.8
Flow Past a Submarine
........................................260
4.13.9
Crystal Growth from the Melt
.................................262
4.13.10
Mold Filling
..................................................263
4.13.11
Examples Using Least-Squares Finite Element Models
.........267
4.13.11.1
Kovasznay flow
.....................................267
4.13.11.2
Flow over a backward-facing step
....................269
4.13.11.3
Flow past a cylinder at low Reynolds number
........270
Problems
................................................................273
References for Additional Reading
........................................275
5.
Coupled Fluid Flow and Heat Transfer
.........................285
5.1
Introduction
.........................................................285
5.2
Nonisothermal Incompressible Flows
..................................286
5.2.1
Governing Equations
............................................286
5.2.2
Boundary Conditions
...........................................288
5.3
Mixed Finite Element Model
.........................................289
5.4
Penalty Finite Element Model
........................................293
5.4.1
Preliminary Comments
.........................................293
5.4.2
Reduced Integration Penalty Model
.............................294
5.4.3
Consistent Penalty Model
.......................................295
5.5
Finite Element Models of Porous Flow
................................295
5.6
Nonisothermal, Low-Speed, Compressible Flows
......................297
5.6.1
Governing Equations
............................................297
5.6.2
Boundary Conditions
...........................................299
5.6.3
Mixed Finite Element Model
....................................299
5.7
Solution Methods
....................................................302
5.7.1
General Discussion
..............................................302
5.7.2
Newton s Method
...............................................303
5.7.3
Segregated Equation Methods
...................................304
5.8
Convection with Change of Phase
....................................306
5.9
Convection with Enclosure Radiation
.................................308
5.10
Post-Computation of Heat Flux
......................................308
5.11
Turbulent Heat Transfer
.............................................310
5.12
Chemically Reacting Systems
.........................................311
5.12.1
Preliminary Comments
........................................311
5.12.2
Finite Element Modeling of Chemical Reactions
................311
5.13
Numerical Examples
.................................................312
5.13.1
Preliminary Comments
........................................312
5.13.2
Concentric Tube Flow
.........................................312
CONTENTS
ХШ
5.13.3
Tube Flow with Change of Phase
..............................313
5.13.4
Heated Cavity
—
Boussinesq Model
............................314
5.13.5
Heated Cavity
-
Acoustically Filtered Model
..................316
5.13.6
Solar Receiver
.................................................317
5.13.7
Tube Bundle
..................................................320
5.13.8
Volumetrically Heated Fluid
...................................322
5.13.9
Porous/Fluid Layer
............................................322
5.13.10
Curing of an Epoxy
...........................................326
5.13.11
Heated Channel
..............................................329
5.13.12
Closure
.......................................................331
References for Additional Reading
........................................331
6.
Flows of Non-Newtonian Fluids
..................................335
6.1
Introduction
.........................................................335
6.2
Governing Equations of Inelastic Fluids
...............................336
6.2.1
Conservation Equations
.........................................336
6.2.2
Boundary Conditions
...........................................337
6.2.3
Constitutive Equations
.........................................338
6.2.3.1
Power-law model
........................................339
6.2.3.2
Carreau
model
..........................................340
6.2.3.3
Bingham model
.........................................340
6.3
Finite Element Models of Inelastic Fluids
.............................341
6.3.1
Introduction
....................................................341
6.3.2
Mixed Model
...................................................341
6.3.3
Penalty Model
..................................................343
6.3.4
Matrix Evaluations
.............................................344
6.4
Solution Methods for Inelastic Fluids
.................................346
6.5
Governing Equations of Viscoelastic Fluids
...........................350
6.5.1
Conservation Equations
.........................................350
6.5.2
Constitutive Equations
.........................................351
6.5.2.1
Differential models
......................................352
6.5.2.2
Integral models
..........................................355
6.5.3
Boundary Conditions
...........................................356
6.6
Finite Element Model of Differential Form
............................357
6.6.1
Preliminary Comments
.........................................357
6.6.2
Summary of Governing Equations
...............................357
6.6.3
Finite Element Model
...........................................358
6.6.4
Solution Methods
...............................................362
6.7
Additional Models of Differential Form
...............................363
6.7.1
Explicitly Elliptic Momentum Equation Method
.................364
6.7.2
Elastic Viscous Stress Splitting Method
.........................365
6.8
Finite Element Model of Integral Form
...............................367
6.9
Unresolved Problems
.................................................368
6.9.1
General Comments
.............................................368
6.9.2
Choice of Constitutive Equation
................................369
XIV
CONTENTS
6.9.3
Uniqueness and Existence of Solutions
..........................370
6.9.4
Numerical Algorithm Problems
.................................370
6.9.5
Equation Change of Type
.......................................371
6.9.6
Closure
.........................................................372
6.10
Numerical Examples
.................................................372
6.10.1
Preliminary Comments
........................................372
6.10.2
Buoyancy Driven Flow in a Cavity
.............................372
6.10.3
Driven Cavity Flow
............................................374
6.10.4
Squeeze Film Flow
.............................................374
6.10.5
Time-Dependent Poiseuille Flow
...............................377
6.10.6
Four-to-One Contraction Problem
..............................380
Problems
................................................................381
References for Additional Reading
........................................382
7.
Multiphysics Problems
.............................................387
7.1
Introduction
.........................................................387
7.2
Coupled Boundary Value Problems
...................................387
7.3
Fluid Mechanics and Heat Transfer
...................................388
7.3.1
Introduction
....................................................388
7.3.2
Continuum Equations
...........................................388
7.3.3
Finite Element Models
..........................................390
7.4
Solid Mechanics
......................................................390
7.4.1
Introduction
....................................................390
7.4.2
Kinematics of Deformation
......................................391
7.4.2.1
Descriptions of motion
...................................391
7.4.2.2
Displacement vector
.....................................393
7.4.2.3
Deformation gradient tensor
.............................393
7.4.2.4
Green strain tensor
......................................394
7.4.3
Kinetics
........................................................395
7.4.3.1
Stress measures
..........................................395
7.4.3.2
Equilibrium statements
..................................395
7.4.4
Constitutive Relations
..........................................396
7.4.5
Boundary Conditions
...........................................397
7.4.6
Finite Element Models
..........................................397
7.4.7
Solution Methods
...............................................399
7.5
Electromagnetics
.....................................................399
7.5.1
Introduction
....................................................399
7.5.2
Maxwell s Equations
............................................400
7.5.2.1
Constitutive relations
....................................400
7.5.2.2
Electromagnetic forces and volume heating
...............402
7.5.2.3
Quasi-static approximation
..............................402
7.5.3
Electromagnetic Potentials
......................................403
7.5.4
Boundary and Interface Conditions
.............................405
7.5.5
Gauge Conditions
...............................................407
CONTENTS
XV
7.5.6
Static
Field Problems
...........................................408
7.5.6.1
Electrostatics
............................................408
7.5.6.2
Steady current flow
......................................409
7.5.6.3
Magnetostatics
..........................................409
7.5.7
Finite Element Models for EM Fields
...........................409
7.5.7.1
Quasi-static potential equations
..........................409
7.5.7.2
Gauge condition
.........................................412
7.5.7.3
Static field equations
....................................413
7.5.8
Solution Methods
-
EM Fields
..................................414
7.6
Coupled Problems in Mechanics
......................................415
7.6.1
Introduction
....................................................415
7.6.2
Heat Conduction
—
Viscous Fluid Interactions 1&2
..............416
7.6.3
Heat Conduction
—
Quasi-Static Solid Interactions 1&3
.........416
7.6.4
Heat Conduction
-
Electric Field Interactions 1&4
..............418
7.6.5
Heat Conduction
—
Electromagnetic Field Interactions 1&4&5.
. .418
7.6.6
Viscous Flow
—
Quasi-Static Solid Interactions 2&3
.............420
7.6.7
Viscous Flow
-
Electric Field Interactions 2&4
..................421
7.6.8
Viscous Flow
—
Electromagnetic Field Interactions 2&4&5
......422
7.6.9
Quasi-Static Solid
-
Electromagnetic Field Interactions 3&4&5
.. 423
7.7
Implementation of Coupled Algorithms
...............................424
7.8
Numerical Examples
.................................................426
7.8.1
Introduction
....................................................426
7.8.2
Thermal-Stress Example
........................................426
7.8.3
Thermal-Electromagnetic Example
..............................428
7.8.4
Fluid-Solid Interaction Example
.................................431
7.8.5
Fluid-Electromagnetic Example
.................................432
References for Additional Reading
........................................436
8.
Parallel Processing
..................................................439
8.1
Introduction
.........................................................439
8.2
Parallel Systems
.....................................................440
8.2.1
Classification
...................................................440
8.2.1.1
Granularity of the processing elements
...................440
8.2.1.2
Topology of interconnections
............................440
8.2.1.3
Distribution of control across the processing elements
----441
8.2.1.4
Memory access
..........................................442
8.2.2
Languages and Communication Utilities
.........................442
8.2.3
Performance
....................................................443
8.2.3.1
Algorithmic efficiency
...................................443
8.2.3.2
Actual/Beneficial efficiency
..............................443
8.2.3.3
Scalability
..............................................444
8.3
FEM
and Parallel Processing
.........................................444
8.3.1
Preliminary Comments
.........................................444
8.3.2
Generic
FEM
Steps
.............................................445
8.3.3
External Preprocessing
.........................................445
8.3.4
Internal Preprocessing
..........................................447
XVI CONTENTS
8.3.5
Solution Processing
.............................................447
8.3.5.1 Element
matrices
........................................447
8.3.5.2
Matrix
solvers
...........................................448
8.3.5.3
Solution
control
.........................................450
8.3.6
Internal Postprocessing
.........................................451
8.3.7
External Postprocessing
.........................................451
8.3.8
Other Parallel Issues
............................................451
8.3.8.1
Nonlocal data
...........................................452
8.3.8.2
Multiphysics simulations
................................452
8.4
Summary
............................................................454
References for Additional Reading
........................................454
Appendix A: Computer Program FEM2DHT
.......................457
A.I Introduction
.........................................................457
A.2 Heat Transfer and Related Problems
.................................457
A.3 Flows of Viscous Incompressible Fluids
...............................458
A.4 Description of the Input Data
........................................458
A.5 Source Listings of Selective Subroutines
..............................469
Reference for Additional Reading
........................................470
Appendix B: Solution of Linear Equations
.........................477
B.I Introduction
.........................................................477
B.2 Direct Methods
......................................................478
B.3 Iterative Methods
....................................................479
B.3.1 General Comments
.............................................479
B.3.2 Solution Algorithms
............................................479
References for Additional Reading
........................................483
Appendix C: Fixed Point Methods and Contraction Mappings
485
C.I Fixed Point Theorem
................................................485
C.2 Chord Method
.......................................................486
C.3 Newton s Method
....................................................487
C.4 The Newton-Raphson Method
.......................................488
C.5 Descent Methods
....................................................488
References for Additional Reading
........................................489
Subject Index
............................................................491
|
any_adam_object | 1 |
author | Reddy, Junuthula Narasimha 1945- Gartling, David K. |
author_GND | (DE-588)108393232 |
author_facet | Reddy, Junuthula Narasimha 1945- Gartling, David K. |
author_role | aut aut |
author_sort | Reddy, Junuthula Narasimha 1945- |
author_variant | j n r jn jnr d k g dk dkg |
building | Verbundindex |
bvnumber | BV036071647 |
classification_rvk | UG 2500 |
classification_tum | MTA 309f MTA 009f |
ctrlnum | (OCoLC)633998573 (DE-599)BVBBV036071647 |
dewey-full | 620.106 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.106 |
dewey-search | 620.106 |
dewey-sort | 3620.106 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | 3rd ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01888nam a2200457 c 4500</leader><controlfield tag="001">BV036071647</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140613 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100310s2010 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420085983</subfield><subfield code="9">978-1-4200-8598-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633998573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036071647</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.106</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2500</subfield><subfield code="0">(DE-625)145618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 309f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 009f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reddy, Junuthula Narasimha</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108393232</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The finite element method in heat transfer and fluid dynamics</subfield><subfield code="c">J. N. Reddy ; D. K. Gartling</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press, Taylor & Francis</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 500 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CRC series in computational mechanics and applied analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gartling, David K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018962916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018962916</subfield></datafield></record></collection> |
id | DE-604.BV036071647 |
illustrated | Illustrated |
indexdate | 2024-12-20T14:06:11Z |
institution | BVB |
isbn | 9781420085983 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018962916 |
oclc_num | 633998573 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-83 DE-M347 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-83 DE-M347 |
physical | XXIII, 500 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | CRC Press, Taylor & Francis |
record_format | marc |
series2 | CRC series in computational mechanics and applied analysis |
spellingShingle | Reddy, Junuthula Narasimha 1945- Gartling, David K. The finite element method in heat transfer and fluid dynamics Finite-Elemente-Methode (DE-588)4017233-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4064211-2 (DE-588)4077970-1 |
title | The finite element method in heat transfer and fluid dynamics |
title_auth | The finite element method in heat transfer and fluid dynamics |
title_exact_search | The finite element method in heat transfer and fluid dynamics |
title_full | The finite element method in heat transfer and fluid dynamics J. N. Reddy ; D. K. Gartling |
title_fullStr | The finite element method in heat transfer and fluid dynamics J. N. Reddy ; D. K. Gartling |
title_full_unstemmed | The finite element method in heat transfer and fluid dynamics J. N. Reddy ; D. K. Gartling |
title_short | The finite element method in heat transfer and fluid dynamics |
title_sort | the finite element method in heat transfer and fluid dynamics |
topic | Finite-Elemente-Methode (DE-588)4017233-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Finite-Elemente-Methode Wärmeübertragung Strömungsmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018962916&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT reddyjunuthulanarasimha thefiniteelementmethodinheattransferandfluiddynamics AT gartlingdavidk thefiniteelementmethodinheattransferandfluiddynamics |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Maschinenwesen
Signatur: |
0702 MTA 009f 2010 B 2538(3) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 2 | Ausleihbar Am Standort |
Exemplar 3 | Ausleihbar Ausgeliehen – Rückgabe bis: 19.03.2025 |