Causality: models, reasoning, and inference
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Ausgabe: | Second edition |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018618229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Umfang: | XIX, 464 Seiten Illustrationen, Diagramme |
ISBN: | 9780521895606 0521773628 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035758307 | ||
003 | DE-604 | ||
005 | 20230719 | ||
007 | t| | ||
008 | 091007s2009 xx a||| |||| 00||| eng d | ||
020 | |a 9780521895606 |9 978-0-521-89560-6 | ||
020 | |a 0521773628 |9 0-521-77362-8 | ||
035 | |a (OCoLC)460284744 | ||
035 | |a (DE-599)BVBBV035758307 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-473 |a DE-19 |a DE-12 |a DE-91G |a DE-11 | ||
050 | 0 | |a BD541 | |
082 | 0 | |a 122 | |
084 | |a AK 22800 |0 (DE-625)2552: |2 rvk | ||
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a MAT 600f |2 stub | ||
100 | 1 | |a Pearl, Judea |d 1936- |e Verfasser |0 (DE-588)139283331 |4 aut | |
245 | 1 | 0 | |a Causality |b models, reasoning, and inference |c Judea Pearl |
250 | |a Second edition | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XIX, 464 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Kausalität - Mathematik | |
650 | 4 | |a Kausalität - Methode - Wissenschaft - Kausalitätswahrnehmung | |
650 | 4 | |a Vernunft - Kausalmodell | |
650 | 4 | |a Causation | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissenschaft |0 (DE-588)4066562-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vernunft |0 (DE-588)4063106-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kausalität |0 (DE-588)4030102-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kausalmodell |0 (DE-588)4123496-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kausalitätswahrnehmung |0 (DE-588)4290135-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Analyse |0 (DE-588)4116599-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kausalität |0 (DE-588)4030102-3 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wissenschaft |0 (DE-588)4066562-8 |D s |
689 | 1 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 1 | 2 | |a Kausalitätswahrnehmung |0 (DE-588)4290135-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Kausalität |0 (DE-588)4030102-3 |D s |
689 | 2 | 1 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Vernunft |0 (DE-588)4063106-0 |D s |
689 | 3 | 1 | |a Kausalmodell |0 (DE-588)4123496-0 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Kausalität |0 (DE-588)4030102-3 |D s |
689 | 4 | 1 | |a Statistische Analyse |0 (DE-588)4116599-8 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
689 | 5 | 0 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |D s |
689 | 5 | |8 5\p |5 DE-604 | |
689 | 6 | 0 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 6 | |8 6\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018618229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-018618229 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102 MAT 600f 2010 B 885(2) |
---|---|
DE-BY-TUM_katkey | 1722259 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040010227604 |
_version_ | 1821933835373248512 |
adam_text | Contents
Preface
to the First Edition page
χν
Preface to the Second Edition
xix
1
Introduction to Probabilities, Graphs, and Causal Models
1
1.1
Introduction to Probability Theory
1
1.1.1
Why Probabilities?
1
1.1.2
Basic Concepts in Probability Theory
2
1.1.3
Combining Predictive and Diagnostic Supports
6
1.1.4
Random Variables and Expectations
8
1.1.5
Conditional Independence and Graphoids
11
1.2
Graphs and Probabilities
12
1.2.1
Graphical Notation and Terminology
12
1.2.2
Bayesian Networks
13
1.2.3
The ¿/-Separation Criterion
16
1.2.4
Inference with Bayesian Networks
20
1.3
Causal Bayesian Networks
21
1.3.1
Causal Networks as Oracles for Interventions
22
1.3.2
Causal Relationships and Their Stability
24
1.4
Functional Causal Models
26
1.4.1
Structural Equations
27
1.4.2
Probabilistic Predictions in Causal Models
30
1.4.3
Interventions and Causal Effects in Functional Models
32
1.4.4
Counterfactuals in Functional Models
33
1.5
Causal versus Statistical Terminology
38
2
A Theory of Inferred Causation
41
2.1
Introduction
-
The Basic Intuitions
42
2.2
The Causal Discovery Framework
43
2.3
Model Preference (Occam s Razor)
45
2.4
Stable Distributions
48
2.5
Recovering DAG Structures
49
2.6
Recovering Latent Structures
51
Contents
2.7
Local Criteria for Inferring Causal Relations
54
2.8
Nontemporal
Causation and Statistical Time
57
2.9
Conclusions
59
2.9.1
On Minimality, Markov, and Stability
61
Causal Diagrams and the Identification of Causal Effects
65
3.1
Introduction
66
3.2
Intervention in Markovian Models
68
3.2.1
Graphs as Models of Interventions
68
3.2.2
Interventions as Variables
70
3.2.3
Computing the Effect of Interventions
72
3.2.4
Identification of Causal Quantities
77
3.3
Controlling Confounding Bias
78
3.3.1
The Back-Door Criterion
79
3.3.2
The Front-Door Criterion
81
3.3.3
Example: Smoking and the Genotype Theory
83
3.4
A Calculus of Intervention
85
3.4.1
Preliminary Notation
85
3.4.2
Inference Rules
85
3.4.3
Symbolic Derivation of Causal Effects: An Example
86
3.4.4
Causal Inference by Surrogate Experiments
88
3.5
Graphical Tests of Identi
fi
ability
89
3.5.1
Identifying Models
91
3.5.2
Nonidentifying Models
93
3.6
Discussion
94
3.6.1
Qualifications and Extensions
94
3.6.2
Diagrams as a Mathematical Language
96
3.6.3
Translation from Graphs to Potential Outcomes
98
3.6.4
Relations to Robins s G-Estimation
102
Actions, Plans, and Direct Effects
107
4.1
Introduction
108
4.1.1
Actions, Acts, and Probabilities
108
4.1.2
Actions in Decision Analysis
110
4.1.3
Actions and Counterfactuals
112
4.2
Conditional Actions and Stochastic Policies
113
4.3
When Is the Effect of an Action Identifiable?
114
4.3.1
Graphical Conditions for Identification
114
4.3.2
Remarks on Efficiency
116
4.3.3
Deriving a Closed-Form Expression
for Control Queries
117
4.3.4
Summary
118
4.4
The Identification of Dynamic Plans
118
4.4.1
Motivation
118
4.4.2
Plan Identification: Notation and Assumptions
120
Contents
4.4.3 Plan Identification:
The Sequential Back-Door Criterion
121
4.4.4 Plan Identification:
A Procedure
124
4.5
Direct and Indirect Effects
126
4.5.1
Direct versus Total Effects
126
4.5.2
Direct Effects, Definition, and Identification
127
4.5.3
Example: Sex Discrimination in College Admission
128
4.5.4
Natural Direct Effects
130
4.5.5
Indirect Effects
132
Causality and Structural Models in Social Science and Economics
133
5.1
Introduction
134
5.1.1
Causality in Search of a Language
134
5.1.2 SEM:
How Its Meaning Became Obscured
135
5.1.3
Graphs as a Mathematical Language
138
5.2
Graphs and Model Testing
140
5.2.1
The Testable Implications of Structural Models
140
5.2.2
Testing the Testable
144
5.2.3
Model Equivalence
145
5.3
Graphs and Identifiability
149
5.3.1
Parameter Identification in Linear Models
149
5.3.2
Comparison to Nonparametric Identification
154
5.3.3
Causal Effects: The Interventional Interpretation of
Structural Equation Models
157
5.4
Some Conceptual Underpinnings
159
5.4.1
What Do Structural Parameters Really Mean?
159
5.4.2
Interpretation of Effect Decomposition
163
5.4.3
Exogeneity, Superexogeneity, and Other Frills
165
5.5
Conclusion
170
5.6
Postscript for the Second Edition
171
5.6.1
An Econometric Awakening?
171
5.6.2
Identification in Linear Models
171
5.6.3
Robustness of Causal Claims
172
Simpson s Paradox, Confounding, and Collapsibility
173
6.1
Simpson s Paradox: An Anatomy
174
6.1.1
A Tale of a Non-Paradox
174
6.1.2
A Tale of Statistical Agony
175
6.1.3
Causality versus Exchangeability
177
6.1.4
A Paradox Resolved (Or: What Kind of Machine Is Man?)
180
6.2
Why There Is No Statistical Test for Confounding, Why Many
Think There Is, and Why They Are Almost Right
182
6.2.1
Introduction
182
6.2.2
Causal and Associational Definitions
184
6.3
How the Associational Criterion Fails
185
6.3.1
Failing Sufficiency via Marginality
185
6.3.2
Failing Sufficiency via Closed-World Assumptions
186
Contents
6.3.3
Failing Necessity via
Barren Proxies 186
6.3.4
Failing Necessity via Incidental Cancellations
188
6.4
Stable versus Incidental Unbiasedness
189
6.4.1
Motivation
189
6.4.2
Formal Definitions
191
6.4.3
Operational Test for Stable No-Confounding
192
6.5
Confounding, Collapsibility, and Exchangeability
193
6.5.1
Confounding and Collapsibility
193
6.5.2
Confounding versus Confounders
194
6.5.3
Exchangeability versus Structural Analysis of Confounding
196
6.6
Conclusions
199
The Logic of Structure-Based Counterfactuals
201
7.1
Structural Model Semantics
202
7.1.1
Definitions: Causal Models, Actions, and Counterfactuals
202
7.1.2
Evaluating Counterfactuals: Deterministic Analysis
207
7.1.3
Evaluating Counterfactuals: Probabilistic Analysis
212
7.1.4
The Twin Network Method
213
7.2
Applications and Interpretation of Structural Models
215
7.2.1
Policy Analysis in Linear Econometric Models:
An Example
215
7.2.2
The Empirical Content of Counterfactuals
217
7.2.3
Causal Explanations, Utterances, and Their Interpretation
221
7.2.4
From Mechanisms to Actions to Causation
223
7.2.5
Simon s Causal Ordering
226
7.3
Axiomatic Characterization
228
7.3.1
The Axioms of Structural Counterfactuals
228
7.3.2
Causal Effects from Counterfactual Logic: An Example
231
7.3.3
Axioms of Causal Relevance
234
7.4
Structural and Similarity-Based Counterfactuals
238
7.4.1
Relations to Lewis s Counterfactuals
238
7.4.2
Axiomatic Comparison
240
7.4.3
Imaging versus Conditioning
242
7.4.4
Relations to the Neyman-Rubin Framework
243
7.4.5
Exogeneity and Instruments: Counterfactual and
Graphical Definitions
245
7.5
Structural versus Probabilistic Causality
249
7.5.1
The Reliance on Temporal Ordering
249
7.5.2
The Perils of Circularity
250
7.5.3
Challenging the Closed-World Assumption, with Children
252
7.5.4
Singular versus General Causes
253
7.5.5
Summary
256
Imperfect Experiments: Bounding Effects and Counterfactuals
259
8.1
Introduction
259
8.1.1
Imperfect and Indirect Experiments
259
8.1.2
Noncompliance and Intent to Treat
261
Contents xi
8.2
Bounding Causal Effects with Instrumental Variables
262
8.2.1
Problem Formulation: Constrained Optimization
262
8.2.2
Canonical Partitions: The Evolution of
Finite-Response Variables
263
8.2.3
Linear Programming Formulation
266
8.2.4
The Natural Bounds
268
8.2.5
Effect of Treatment on the Treated
(ETT)
269
8.2.6
Example: The Effect of Cholestyramine
270
8.3
Counterfactuals and Legal Responsibility
271
8.4
A Test for Instruments
274
8.5
A Bayesian Approach to Noncompliance
275
8.5.1
Bayesian Methods and Gibbs Sampling
275
8.5.2
The Effects of Sample Size and Prior Distribution
277
8.5.3
Causal Effects from Clinical Data with Imperfect
Compliance
277
8.5.4
Bayesian Estimate of Single-Event Causation
280
8.6
Conclusion
281
9
Probability of Causation: Interpretation and Identification
283
9.1
Introduction
283
9.2
Necessary and Sufficient Causes: Conditions of Identification
286
9.2.1
Definitions, Notation, and Basic Relationships
286
9.2.2
Bounds and Basic Relationships under Exogeneity
289
9.2.3
Identifiability under
Monotonicity
and Exogeneity
291
9.2.4
Identifiability under
Monotonicity
and Nonexogeneity
293
9.3
Examples and Applications
296
9.3.1
Example
1:
Betting against a Fair Coin
296
9.3.2
Example
2:
The Firing Squad
297
9.3.3
Example
3:
The Effect of Radiation on Leukemia
299
9.3.4
Example
4:
Legal Responsibility from Experimental and
Nonexperimental Data
302
9.3.5
Summary of Results
303
9.4
Identification in Nonmonotonic Models
304
9.5
Conclusions
307
10
The Actual Cause
309
10.1
Introduction: The Insufficiency of Necessary Causation
309
10.1.1
Singular Causes Revisited
309
10.1.2
Preemption and the Role of Structural Information
311
10.1.3
Overdetermination and Quasi-Dependence
313
10.1.4
Mackie s INUS Condition
313
10.2
Production, Dependence, and Sustenance
316
10.3
Causal Beams and Sustenance-Based Causation
318
10.3.1
Causal Beams: Definitions and Implications
318
10.3.2
Examples: From Disjunction to General Formulas
320
10.3.3
Beams, Preemption, and the Probability of
Single-Event Causation
322
xii Contents
10.3.4
Path-Switching Causation
324
10.3.5
Temporal Preemption
325
10.4
Conclusions
327
11
Reflections, Elaborations, and Discussions with Readers
331
11.1
Causal, Statistical, and Graphical Vocabulary
331
11.1.1
Is the Causal-Statistical Dichotomy Necessary?
331
11.1.2
¿-Separation without Tears (Chapter
1,
pp.
16-18) 335
11.2
Reversing Statistical Time (Chapter
2,
p.
58-59) 337
11.3
Estimating Causal Effects
338
11.3.1
The Intuition behind the Back-Door Criterion
(Chapter
3,
p.
79) 338
11.3.2
Demystifying Strong Ignorability
341
11.3.3
Alternative Proof of the Back-Door Criterion
344
11.3.4
Data vs. Knowledge in Covariate Selection
346
11.3.5
Understanding Propensity Scores
348
11.3.6
The Intuition behind do-Calculus
352
11.3.7
The Validity of G-Estimation
352
11.4
Policy Evaluation and the do-Operator
354
11.4.1
Identifying Conditional Plans (Section
4.2,
p.
113) 354
11.4.2
The Meaning of Indirect Effects
355
11.4.3
Can do(x) Represent Practical Experiments?
358
11.4.4
Is the do{x) Operator Universal?
359
11.4.5
Causation without Manipulation!!!
361
11.4.6
Hunting Causes with Cartwright
362
11.4.7
The Illusion of Nonmodularity
364
11.5
Causal Analysis in Linear Structural Models
366
11.5.1
General Criterion for Parameter Identification
(Chapter
5,
pp.
149-54) 366
11.5.2
The Causal Interpretation of Structural Coefficients
366
11.5.3
Defending the Causal Interpretation of
SEM
(or,
SEM
Survival Kit)
368
11.5.4
Where Is Economic Modeling Today?
-
Courting
Causes with
Heekman
374
11.5.5
External Variation versus Surgery
376
11.6
Decisions and Confounding (Chapter
6) 380
11.6.1
Simpson s Paradox and Decision Trees
380
11.6.2
Is Chronological Information Sufficient for
Decision Trees?
382
11.6.3
Lindley on Causality, Decision Trees, and Bayesianism
384
11.6.4
Why Isn t Confounding a Statistical Concept?
387
11.7
The Calculus of Counterfactuals
389
11.7.1
Counterfactuals in Linear Systems
389
11.7.2
The Meaning of Counterfactuals
391
11.7.3
J-Separation of Counterfactuals
393
Contents xiii
11.8 Instrumental Variables
and Noncompliance
395
11.8.1
Tight Bounds under
Noncompliance 395
11.9
More on Probabilities of Causation
396
11.9.1
Is Guilty with Probability One Ever Possible?
396
11.9.2
Tightening the Bounds on Probabilities of Causation
398
Epilogue The Art and Science of Cause and Effect
A public lecture delivered in November
1996
as part of
the UCLA Faculty Research Lectureship Program
401
Bibliography
429
Name Index
453
Subject Index
459
|
any_adam_object | 1 |
author | Pearl, Judea 1936- |
author_GND | (DE-588)139283331 |
author_facet | Pearl, Judea 1936- |
author_role | aut |
author_sort | Pearl, Judea 1936- |
author_variant | j p jp |
building | Verbundindex |
bvnumber | BV035758307 |
callnumber-first | B - Philosophy, Psychology, Religion |
callnumber-label | BD541 |
callnumber-raw | BD541 |
callnumber-search | BD541 |
callnumber-sort | BD 3541 |
callnumber-subject | BD - Speculative Philosophy |
classification_rvk | AK 22800 CC 2600 SK 800 |
classification_tum | MAT 600f |
ctrlnum | (OCoLC)460284744 (DE-599)BVBBV035758307 |
dewey-full | 122 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 122 - Causation |
dewey-raw | 122 |
dewey-search | 122 |
dewey-sort | 3122 |
dewey-tens | 120 - Epistemology, causation, humankind |
discipline | Allgemeines Mathematik Philosophie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03795nam a2200877 c 4500</leader><controlfield tag="001">BV035758307</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230719 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">091007s2009 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521895606</subfield><subfield code="9">978-0-521-89560-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521773628</subfield><subfield code="9">0-521-77362-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)460284744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035758307</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">BD541</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">122</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AK 22800</subfield><subfield code="0">(DE-625)2552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pearl, Judea</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139283331</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Causality</subfield><subfield code="b">models, reasoning, and inference</subfield><subfield code="c">Judea Pearl</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 464 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kausalität - Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kausalität - Methode - Wissenschaft - Kausalitätswahrnehmung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vernunft - Kausalmodell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissenschaft</subfield><subfield code="0">(DE-588)4066562-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vernunft</subfield><subfield code="0">(DE-588)4063106-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kausalität</subfield><subfield code="0">(DE-588)4030102-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kausalmodell</subfield><subfield code="0">(DE-588)4123496-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kausalitätswahrnehmung</subfield><subfield code="0">(DE-588)4290135-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kausalität</subfield><subfield code="0">(DE-588)4030102-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wissenschaft</subfield><subfield code="0">(DE-588)4066562-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Kausalitätswahrnehmung</subfield><subfield code="0">(DE-588)4290135-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kausalität</subfield><subfield code="0">(DE-588)4030102-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Vernunft</subfield><subfield code="0">(DE-588)4063106-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Kausalmodell</subfield><subfield code="0">(DE-588)4123496-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Kausalität</subfield><subfield code="0">(DE-588)4030102-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018618229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018618229</subfield></datafield></record></collection> |
id | DE-604.BV035758307 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:59:30Z |
institution | BVB |
isbn | 9780521895606 0521773628 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018618229 |
oclc_num | 460284744 |
open_access_boolean | |
owner | DE-83 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-12 DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-83 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-12 DE-91G DE-BY-TUM DE-11 |
physical | XIX, 464 Seiten Illustrationen, Diagramme |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spellingShingle | Pearl, Judea 1936- Causality models, reasoning, and inference Kausalität - Mathematik Kausalität - Methode - Wissenschaft - Kausalitätswahrnehmung Vernunft - Kausalmodell Causation Probabilities Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wissenschaft (DE-588)4066562-8 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Vernunft (DE-588)4063106-0 gnd Kausalität (DE-588)4030102-3 gnd Kausalmodell (DE-588)4123496-0 gnd Kausalitätswahrnehmung (DE-588)4290135-2 gnd Methode (DE-588)4038971-6 gnd Unsicheres Schließen (DE-588)4361044-4 gnd Statistische Analyse (DE-588)4116599-8 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4066562-8 (DE-588)4182963-3 (DE-588)4063106-0 (DE-588)4030102-3 (DE-588)4123496-0 (DE-588)4290135-2 (DE-588)4038971-6 (DE-588)4361044-4 (DE-588)4116599-8 (DE-588)4137007-7 |
title | Causality models, reasoning, and inference |
title_auth | Causality models, reasoning, and inference |
title_exact_search | Causality models, reasoning, and inference |
title_full | Causality models, reasoning, and inference Judea Pearl |
title_fullStr | Causality models, reasoning, and inference Judea Pearl |
title_full_unstemmed | Causality models, reasoning, and inference Judea Pearl |
title_short | Causality |
title_sort | causality models reasoning and inference |
title_sub | models, reasoning, and inference |
topic | Kausalität - Mathematik Kausalität - Methode - Wissenschaft - Kausalitätswahrnehmung Vernunft - Kausalmodell Causation Probabilities Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wissenschaft (DE-588)4066562-8 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Vernunft (DE-588)4063106-0 gnd Kausalität (DE-588)4030102-3 gnd Kausalmodell (DE-588)4123496-0 gnd Kausalitätswahrnehmung (DE-588)4290135-2 gnd Methode (DE-588)4038971-6 gnd Unsicheres Schließen (DE-588)4361044-4 gnd Statistische Analyse (DE-588)4116599-8 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd |
topic_facet | Kausalität - Mathematik Kausalität - Methode - Wissenschaft - Kausalitätswahrnehmung Vernunft - Kausalmodell Causation Probabilities Wahrscheinlichkeitsrechnung Wissenschaft Statistische Schlussweise Vernunft Kausalität Kausalmodell Kausalitätswahrnehmung Methode Unsicheres Schließen Statistische Analyse Wahrscheinlichkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018618229&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pearljudea causalitymodelsreasoningandinference |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Mathematik & Informatik
Signatur: |
0102 MAT 600f 2010 B 885(2) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |