Advanced data mining techniques:
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XII, 180 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 9783540769163 3540769161 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023081838 | ||
003 | DE-604 | ||
005 | 20201106 | ||
007 | t| | ||
008 | 080115s2008 gw d||| |||| 00||| eng d | ||
015 | |a 07,N47,0511 |2 dnb | ||
016 | 7 | |a 986189499 |2 DE-101 | |
020 | |a 9783540769163 |c Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.) |9 978-3-540-76916-3 | ||
020 | |a 3540769161 |c Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.) |9 3-540-76916-1 | ||
024 | 3 | |a 9783540769163 | |
028 | 5 | 2 | |a 12195442 |
035 | |a (OCoLC)191760124 | ||
035 | |a (DE-599)DNB986189499 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-92 |a DE-703 |a DE-573 |a DE-83 |a DE-2070s | ||
050 | 0 | |a QA76.9.D343 | |
082 | 0 | |a 006.312 |2 22 | |
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a 330 |2 sdnb | ||
100 | 1 | |a Olson, David L. |d 1944- |e Verfasser |0 (DE-588)1055798854 |4 aut | |
245 | 1 | 0 | |a Advanced data mining techniques |c David L. Olson ; Dursun Delen |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XII, 180 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Data mining | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Delen, Dursun |e Verfasser |0 (DE-588)1136283463 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016284848 |
Datensatz im Suchindex
_version_ | 1819361961516728320 |
---|---|
adam_text | Contents
Part I INTRODUCTION
1
Introduction
...............................................................................................3
What is Data Mining?
..........................................................................5
What is Needed to Do Data Mining
.....................................................5
Business Data Mining
..........................................................................7
Data Mining Tools
...............................................................................8
Summary
..............................................................................................8
2
Data Mining Process
.................................................................................9
CRISP-DM
..........................................................................................9
Business Understanding
.............................................................11
Data Understanding
...................................................................11
Data Preparation
........................................................................12
Modeling
...................................................................................15
Evaluation
..................................................................................18
Deployment
................................................................................18
SEMMA
.............................................................................................19
Steps in SEMMA Process
..........................................................20
Example Data Mining Process Application
.......................................22
Comparison of CRISP
&
SEMMA
....................................................27
Handling Data
....................................................................................28
Summary
............................................................................................34
Part II DATA MINING METHODS AS TOOLS
____________________
3
Memory-Based Reasoning Methods
.......................................................39
Matching
............................................................................................40
Weighted Matching
....................................................................43
Distance Minimization
.......................................................................44
Software
.............................................................................................50
Summary
............................................................................................50
Appendix: Job Application Data Set
..................................................51
X
Contents
4
Association
Rules in Knowledge Discovery
...........................................53
Market-Basket Analysis
.....................................................................55
Market Basket Analysis Benefits
...............................................56
Demonstration on Small Set of Data
.........................................57
Real Market Basket Data
...................................................................59
The Counting Method Without Software
..................................62
Conclusions
........................................................................................68
5
Fuzzy Sets in Data Mining
......................................................................69
Fuzzy Sets and Decision Trees
..........................................................71
Fuzzy Sets and Ordinal Classification
...............................................75
Fuzzy Association Rules
....................................................................79
Demonstration Model
................................................................80
Computational Results
...............................................................84
Testing
.......................................................................................84
Inferences
...................................................................................85
Conclusions
........................................................................................86
6
Rough Sets
..............................................................................................87
A Brief Theory of Rough Sets
...........................................................88
Information System
....................................................................88
Decision Table
...........................................................................89
Some Exemplary Applications of Rough Sets
...................................91
Rough Sets Software Tools
................................................................93
The Process of Conducting Rough Sets Analysis
..............................93
1
Data Pre-Processing
................................................................94
2
Data Partitioning
.....................................................................95
3
Discretization
..........................................................................95
4
Reduct Generation
..................................................................97
5
Rule Generation and Rule Filtering
........................................99
6
Apply the Discretization Cuts to Test
Dataset
......................100
7
Score the Test
Dataset
on Generated Rule set (and
measuring the prediction accuracy)
......................................100
8
Deploying the Rules in a Production System
.......................102
A Representative Example
...............................................................103
Conclusion
.......................................................................................109
7
Support Vector Machines
.....................................................................111
Formal Explanation of SVM
............................................................112
Primal Form
.............................................................................114
Contents
XI
Dual Form
................................................................................114
Soft Margin
..............................................................................114
Non-linear Classification
.................................................................115
Regression
................................................................................116
Implementation
........................................................................116
Kernel Trick
.............................................................................117
Use of SVM
-
A Process-Based Approach
.....................................118
Support Vector Machines versus Artificial Neural Networks
.........121
Disadvantages of Support Vector Machines
....................................122
8
Genetic Algorithm Support to Data Mining
.........................................125
Demonstration of Genetic Algorithm
..............................................126
Application of Genetic Algorithms in Data Mining
........................131
Summary
..........................................................................................132
Appendix: Loan Application Data Set
.............................................133
9
Performance Evaluation for Predictive Modeling
................................137
Performance Metrics for Predictive Modeling
................................137
Estimation Methodology for Classification Models
........................140
Simple Split (Holdout)
.....................................................................140
The ¿-Fold Cross Validation
............................................................141
Bootstrapping and
Jackknifíng
........................................................143
Area Under the ROC Curve
.............................................................144
Summary
..........................................................................................147
Part III APPLICATIONS
______________________________________
10
Applications of Methods
.....................................................................151
Memory-Based Application
.............................................................151
Association Rule Application
..........................................................153
Fuzzy Data Mining
..........................................................................155
Rough Set Models
............................................................................155
Support Vector Machine Application
..............................................157
Genetic Algorithm Applications
......................................................158
Japanese Credit Screening
.......................................................158
Product Quality Testing Design
...............................................159
Customer Targeting
.................................................................159
Medical Analysis
.....................................................................160
XII Contents
Predicting the Financial Success of Hollywood Movies
.................162
Problem and Data Description
.................................................163
Comparative Analysis of the Data Mining Methods
...............165
Conclusions
......................................................................................167
Bibliography
............................................................................................169
Index
........................................................................................................177
|
any_adam_object | 1 |
author | Olson, David L. 1944- Delen, Dursun |
author_GND | (DE-588)1055798854 (DE-588)1136283463 |
author_facet | Olson, David L. 1944- Delen, Dursun |
author_role | aut aut |
author_sort | Olson, David L. 1944- |
author_variant | d l o dl dlo d d dd |
building | Verbundindex |
bvnumber | BV023081838 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 270 ST 330 ST 530 |
ctrlnum | (OCoLC)191760124 (DE-599)DNB986189499 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01884nam a2200481 c 4500</leader><controlfield tag="001">BV023081838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201106 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080115s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N47,0511</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986189499</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540769163</subfield><subfield code="c">Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)</subfield><subfield code="9">978-3-540-76916-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540769161</subfield><subfield code="c">Pb. : ca. EUR 80.20 (freier Pr.), ca. sfr 130.50 (freier Pr.)</subfield><subfield code="9">3-540-76916-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540769163</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12195442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191760124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986189499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-2070s</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, David L.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1055798854</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced data mining techniques</subfield><subfield code="c">David L. Olson ; Dursun Delen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 180 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delen, Dursun</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136283463</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016284848</subfield></datafield></record></collection> |
id | DE-604.BV023081838 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:08:12Z |
institution | BVB |
isbn | 9783540769163 3540769161 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016284848 |
oclc_num | 191760124 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-92 DE-703 DE-573 DE-83 DE-2070s |
owner_facet | DE-355 DE-BY-UBR DE-92 DE-703 DE-573 DE-83 DE-2070s |
physical | XII, 180 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spellingShingle | Olson, David L. 1944- Delen, Dursun Advanced data mining techniques Exploration de données (Informatique) Data mining Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4428654-5 |
title | Advanced data mining techniques |
title_auth | Advanced data mining techniques |
title_exact_search | Advanced data mining techniques |
title_full | Advanced data mining techniques David L. Olson ; Dursun Delen |
title_fullStr | Advanced data mining techniques David L. Olson ; Dursun Delen |
title_full_unstemmed | Advanced data mining techniques David L. Olson ; Dursun Delen |
title_short | Advanced data mining techniques |
title_sort | advanced data mining techniques |
topic | Exploration de données (Informatique) Data mining Data Mining (DE-588)4428654-5 gnd |
topic_facet | Exploration de données (Informatique) Data mining Data Mining |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016284848&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT olsondavidl advanceddataminingtechniques AT delendursun advanceddataminingtechniques |