Transport phenomena in fires:
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Southampton
WIT Press
2008
|
Schriftenreihe: | Developments in heat transfer
20 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016254639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | 477 S. Ill., graph. Darst. |
ISBN: | 1845641604 9781845641603 |
Internformat
MARC
LEADER | 00000nam a22000002cb4500 | ||
---|---|---|---|
001 | BV023051261 | ||
003 | DE-604 | ||
005 | 20080805 | ||
007 | t| | ||
008 | 071214s2008 xx ad|| |||| 00||| eng d | ||
020 | |a 1845641604 |9 1-84564-160-4 | ||
020 | |a 9781845641603 |9 978-1-84564-160-3 | ||
035 | |a (OCoLC)175284623 | ||
035 | |a (DE-599)BSZ253111218 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a QC320 | |
082 | 0 | |a 621.4022 |2 22 | |
084 | |a UG 2500 |0 (DE-625)145618: |2 rvk | ||
245 | 1 | 0 | |a Transport phenomena in fires |c ed. B Sundén ; M Faghri |
264 | 1 | |a Southampton |b WIT Press |c 2008 | |
300 | |a 477 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Developments in heat transfer |v 20 | |
650 | 4 | |a Chaleur - Transmission | |
650 | 4 | |a Incendies - Simulation par ordinateur | |
650 | 4 | |a Fires |x Computer simulation | |
650 | 4 | |a Heat |x Transmission | |
650 | 0 | 7 | |a Feuer |0 (DE-588)4016969-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transportprozess |0 (DE-588)4185932-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feuer |0 (DE-588)4016969-8 |D s |
689 | 0 | 1 | |a Transportprozess |0 (DE-588)4185932-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sundén, Bengt |4 edt | |
700 | 1 | |a Faghri, Mohammad |e Sonstige |4 oth | |
830 | 0 | |a Developments in heat transfer |v 20 |w (DE-604)BV012181469 |9 20 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016254639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016254639 |
Datensatz im Suchindex
_version_ | 1819281255417511936 |
---|---|
adam_text | Contents
Preface xv
Chapter 1
Mathematical modelling and numerical simulation of fires.......................................... 1
E.E.A. Nilsson, B. Sunden, Z. Y an M. Faghri
1 Introduction.................................................................................................................... 1
2 Turbulent combustion in fires........................................................................................ 2
2.1 Governing equations for turbulent reacting flows................................................ 2
2.2 Chemical kinetics.................................................................................................. 4
2.3 Convection............................................................................................................ 5
2.4 Radiation............................................................................................................... 6
2.5 Burning of solids................................................................................................... 6
3 Simulation and modelling.............................................................................................. 6
3.1 Turbulence modelling and simulation................................................................... 6
3.2 Combustion modelling.......................................................................................... 10
3.3 Pyrolysis modelling............................................................................................... 11
3.4 Consideration of soot formation............................................................................ 11
3.5 Radiation modelling.............................................................................................. 12
4 Numerical method.......................................................................................................... 12
4.1 Domain discretization........................................................................................... 12
4.2 Equation discretization.......................................................................................... 13
4.3 Linear multi-step method...................................................................................... 13
4.4 Multi-grid solver................................................................................................... 14
4.5 Parallel computing................................................................................................ 14
5 Boundary conditions and wall treatment........................................................................ 14
5.1 Boundary conditions............................................................................................. 15
5.2 Wall functions....................................................................................................... 15
6 Case study of upward flame spread over a PMMA board............................................. 16
6.1 Problem description.............................................................................................. 18
6.2 Boundary and initial conditions............................................................................ 18
6.3 Results and discussion of the case study............................................................... 19
Chapter 2
Transport phenomena that affect heat transfer in fully turbulent fires....................... 25
S.R. Tieszen LA. Gritzo
1 Introduction..........................................................•......................................................... ZJ
2 Length and time scales within a fire............................................................................... 26
2.1 Overview............................................................................................................... 26
2.2 Time and length scale range.................................................................................. 28
2.3 Implication for numerical simulation.................................................................... 31
2.4 Implications for modeling..................................................................................... 33
3 Fluid dynamics within large fires................................................................................... 36
3.1 Quiescent conditions............................................................................................. 37
3.2 Interaction with cross-winds................................................................................. 47
4 Scalar transport and radiative properties........................................................................ 50
4.1 Mixing................................................................................................................... 50
4.2 Combustion........................................................................................................... 52
4.3 Absorption properties............................................................................................ 55
4.4 Emission properties............................................................................................... 58
5 Future of transport research in fires............................................................................... 63
Chapter 3
Heat transfer to objects in pool fires................................................................................ 69
J.P. Spinti, J.N. Thornock, E.G. Eddings, P.J. Smith A.F. Sarofim
1 Introduction.................................................................................................................... 69
1.1 Chapter outline...................................................................................................... 70
2 Historical modeling approaches..................................................................................... 71
2.1 Homogeneous flame.............................................................................................. 71
2.2 Homogeneous model and observable fire phenomena......................................... 73
3 V V as a foundation for predicting heat transfer to embedded
objects in pool fires........................................................................................................ 78
3.1 V V hierarchy...................................................................................................... 78
3.2 Validation metric................................................................................................... 79
4 Surrogate fuel formulation............................................................................................. 81
4.1 Validation of surrogate formulation...................................................................... 81
4.2 Burning rates and heat fluxes at steady state........................................................ 83
4.3 Burning rates and heat fluxes for transient burning.............................................. 84
4.4 Effect on fuel composition changes on sooting propensity.................................. 85
4.5 Improved surrogate formulation........................................................................... 86
5 Chemical kinetics for soot production from JP-8........................................................... 86
5.1 Utah Surrogate mechanism................................................................................... 87
5.2 Soot formation and oxidation................................................................................ 88
6 Use of LES methods for pool fires................................................................................. 90
6.1 LES equations....................................................................................................... 91
6.2 Subgrid turbulence models.................................................................................... 93
6.3 LES algorithm....................................................................................................... 94
6.4 Large scale, parallel computing with LES............................................................ 96
6.5 V V studies of LES code/turbulence model........................................................ 97
7 Combustion/reaction models.......................................................................................... 99
7.1 Parameterization of a reacting system................................................................... 101
7.2 Use of canonical reactors...................................................................................... 101
7.3 Progress variable parameterization....................................................................... 102
7.4 Heat loss parameterization.................................................................................... 104
7.5 Soot models........................................................................................................... 107
8 Turbulence/chemistry interactions................................................................................. 107
8.1 Validation of presumed PDF models in nonpremixed flames.............................. 109
8.2 Shape of presumed PDF........................................................................................ 110
9 Radiative heat transfer model......................................................................................... Ill
9.1 Discrete ordinates method..................................................................................... Ill
9.2 Radiative properties.............................................................................................. 112
9.3 Algorithm verification........................................................................................... 113
10 Heat transfer to an embedded object in a JP-8 pool fire................................................ 115
10.1 Modified LES algorithm....................................................................................... 115
10.2 Coupling between LES fire phase and container heat-up phase........................... 115
10.3 Subsystem cases: heat transfer in a large JP-8 pool fire....................................... 116
11 Prediction of heat flux to an explosive device in a JP-8 pool fire.................................. 120
12 Predicting the potential hazard of an explosive device immersed in a
JP-8 pool fire.................................................................................................................. 122
12.1 Three-dimensional heat transfer, PBX combustion model................................... 122
12.2 One-dimensional heat transfer, fast cook-off HMX model.................................. 123
12.3 Prediction of time to ignition and explosion violence.......................................... 123
13 Toward predictivity: error quantification and propagation............................................ 126
14 Summary......................................................................................................................... 127
Chapter 4
Heat and mass transfer effects to be considered when modelling
the effect of fire on structures........................................................................................... 137
A. Jowsey, S. Welch J.L. Torero
1 Introduction.................................................................................................................... 137
2 Building fires.................................................................................................................. 138
3 Methods of thermal analysis........................................................................................... 140
4 The boundary condition.................................................................................................. 141
4.1 Gas-phase conditions............................................................................................ 142
4.2 Application examples............................................................................................ 143
5 The compartment fire..................................................................................................... 144
5.1 Compartment fire models (CFMs)........................................................................ 147
6 Solid-phase phenomena.................................................................................................. 153
6.1 Material integrity................................................................................................... 153
6.2 Treatment of moisture and other chemical processes........................................... 154
7 Conclusions.................................................................................................................... 155
Chapter 5
Weakly buoyant turbulent fire plumes in uniform still and crossflowing
environments....................................................................................................................... 161
F.J. Diez, LP. Bemal G.M. Faeth
1 Introduction.................................................................................................................... 162
2 Structure of steady plumes in still environments........................................................... 162
2.1 Introduction........................................................................................................... 162
2.2 Experimental methods........................................................................................... I64
2.3 Theoretical methods.............................................................................................. 166
2.4 Results and discussion........................................................................................... 168
2.5 Conclusions........................................................................................................... 175
3 Penetration of starting plumes in still environments...................................................... 176
3.1 Introduction........................................................................................................... I76
3.2 Experimental methods........................................................................................... 176
3.3 Theoretical methods.............................................................................................. 178
3.4 Results and discussion........................................................................................... 180
3.5 Conclusions........................................................................................................... 182
4 Penetration and concentration properties of startingand steady plumes
in crossflows................................................................................................................... 182
4.1 Introduction........................................................................................................... 182
4.2 Experimental methods........................................................................................... 185
4.3 Theoretical methods.............................................................................................. 187
4.4 Results and discussion........................................................................................... 191
4.5 Conclusions........................................................................................................... 203
5 Concluding remarks........................................................................................................ 203
Chapter 6
Pyrolysis modeling, thermal decomposition, and transport processes in
combustible solids............................................................................................................... 209
C. Lautenberger C. Fernandez-Pello
1 Introduction.................................................................................................................... 209
2 Pyrolysis modeling and fire modeling............................................................................ 209
2.1 Semi-empirical and fire property-based pyrolysis/gasification models................ 211
2.2 Comprehensive pyrolysis models: thermoplastics................................................ 213
2.3 Comprehensive pyrolysis models: charring materials.......................................... 217
2.4 Comprehensive pyrolysis models: intumescent materials and coatings............... 222
3 Decomposition kinetics and thermodynamics................................................................ 224
3.1 Thermal and thermooxidative stability................................................................. 224
3.2 Reaction enthalpies............................................................................................... 229
4 Heat, mass, and momentum transfer.............................................................................. 233
4.1 Solid phase heat conduction.................................................................................. 233
4.2 Radiation............................................................................................................... 237
4.3 Convection, advection, and diffusion.................................................................... 243
4.4 Momentum............................................................................................................ 244
4.5 Special topics: melting, bubbling, and related phenomena................................... 244
5 Fire growth modeling..................................................................................................... 245
6 Concluding remarks........................................................................................................ 247
Chapter 7
Radiative heat transfer in fire modeling.......................................................................... 261
M.F. Modest
1 Introduction....................................................................................................... 261
2 Radiative properties of combustion gases...................................................................... 263
3 Radiative properties of soot............................................................................................ 264
4 Band models................................................................................................................... 264
4.1 Traditional narrow band models........................................................................... 265
4.2 Traditional wide band models............................................................................... 266
4.3 Narrow band ^-distributions.................................................................................. 266
5 Global models................................................................................................................. 269
5.1. The WSGG method............................................................................................... 270
5.2 The SLW method.................................................................................................. 271
5.3 Full-spectrum ^-distributions................................................................................ 272
5.4 FSK assembly from a narrow band database........................................................ 275
6 Turbulence-radiation interactions.................................................................................. 276
6.1 Turbulence-radiation coupling............................................................................. 277
6.2 Assumed-PDF investigations................................................................................ 279
6.3 Composition PDF methods................................................................................... 280
6.4 Direct numerical simulations of TRIs................................................................... 289
6.5 TRI effects in nonpremixed flames....................................................................... 289
7. Summary......................................................................................................................... 292
Chapter 8
Thermal radiation modeling in flames and fires............................................................. 301
S. Sen I.K. Puri
1 Introduction.................................................................................................................... 301
2 Basic equations............................................................................................................... 302
2.1 Energy conservation equation............................................................................... 302
2.2 Radiative transfer equation................................................................................... 302
3 Solution of the RTE........................................................................................................ 303
3.1 Radiative property models.................................................................................... 303
3.2 Radiative properties of entrained and generated particles.................................... 306
3.3 Solution methodologies......................................................................................... 307
4 Radiation from flames.................................................................................................... 308
5 Radiation from fires........................................................................................................ 315
6 Summary......................................................................................................................... 317
Chapter 9
Combustion subgrid scale modeling for large eddy simulation of fires........................ 327
P.E. DesJardin, H. Shihn M.D. Carrara
1 Introduction.................................................................................................................... 327
2 LES mathematical formulation...................................................................................... 328
3 Combustion SGS models................................................................................................ 331
3.1 Filtered density function....................................................................................... 331
3.2 One-dimensional turbulence................................................................................. 344
4 Summary......................................................................................................................... 352
Chapter 10
CFD fire simulation and its recent development............................................................. 357
Z. Yan
1 Introduction.................................................................................................................... 357
2 CFD simulation of conventional fire.............................................................................. 358
2.1 Gas phase simulation............................................................................................. JJO
2.2 Modeling of the response of solid materials......................................................... 382
2.3 Conventional fire simulation cases....................................................................... 393
3 CFD simulation of spontaneous ignition in porous fuel storage.................................... 396
3.1 The comprehensive spontaneous ignition CFD model......................................... 398
3.2 CFD simulation of spontaneous ignition experiment............................................ 399
4 Conclusions.................................................................................................................... 400
Chapter 11
The implementation and application of a fire CFD model............................................. 407
/. Treues J.E. Floyd
1 Introduction.................................................................................................................... 407
2 Turbulence modelling..................................................................................................... 409
3 Solution speed and stability............................................................................................ 410
4 Accounting for energy.................................................................................................... 411
4.1 Combustion modelling.......................................................................................... 411
4.2 Heat transfer.......................................................................................................... 415
5 Liquid sprays.................................................................................................................. 419
5.1 Drop size distribution............................................................................................ 420
5.2 Spray pattern creation........................................................................................... 422
5.3 Spray momentum.................................................................................................. 422
5.4 Droplet heat transfer and evaporation................................................................... 424
5.5 Evaporation impact on divergence........................................................................ 425
6 Boundary and initial conditions..................................................................................... 425
7 The practice of modelling............................................................................................... 426
7.1 Preparation............................................................................................................ 426
8 Assessing the model, assessing the results..................................................................... 428
8.1 Verification............................................................................................................ 429
8.2 Validation.............................................................................................................. 429
8.3 Uncertainty and sensitivity analyses..................................................................... 430
8.4 Certification, accreditation, quality assurance...................................................... 432
8.5 Review................................................................................................................... 433
9 Examples........................................................................................................................ 433
9.1 Grid density........................................................................................................... 433
9.2 Turbulence model.................................................................................................. 433
9.3 Symmetry.............................................................................................................. 435
9.4 Sprinklers.............................................................................................................. 435
9.5 Combustible material properties........................................................................... 435
9.6 Radiation solver settings....................................................................................... 437
10 Conclusions.................................................................................................. 437
Chapter 12
CFD-based modeling of combustion and suppression in compartment fires............... 441
A. Trouvé A. Marshall
1 Introduction.................................................................................... 441
Transient ignition and early fire growth......................................................................... 443
2.1 Modeling of PPC................................................................................................... 444
2.2 Simulation of the transient ignition and combustion of a fuel vapor cloud.......... 449
Smoke filling and pre-flashover fire spread................................................................... 454
3.1 Modeling of fire spread......................................................................................... 455
3.2 Simulation of fire spread (without flashover)....................................................... 456
Flashover and transition to under-ventilated combustion.............................................. 459
4.1 Modeling of under-ventilated combustion............................................................ 460
4.2 Simulation of fire spread (with flashover)............................................................ 461
Water-based fire suppression and fire control/extinction............................................... 464
5.1 Models for water-based fire suppression.............................................................. 466
5.2 Simulation of water-based fire suppression.......................................................... 472
Conclusion...................................................................................................................... 473
|
any_adam_object | 1 |
author2 | Sundén, Bengt |
author2_role | edt |
author2_variant | b s bs |
author_facet | Sundén, Bengt |
building | Verbundindex |
bvnumber | BV023051261 |
callnumber-first | Q - Science |
callnumber-label | QC320 |
callnumber-raw | QC320 |
callnumber-search | QC320 |
callnumber-sort | QC 3320 |
callnumber-subject | QC - Physics |
classification_rvk | UG 2500 |
ctrlnum | (OCoLC)175284623 (DE-599)BSZ253111218 |
dewey-full | 621.4022 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.4022 |
dewey-search | 621.4022 |
dewey-sort | 3621.4022 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01669nam a22004572cb4500</leader><controlfield tag="001">BV023051261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080805 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">071214s2008 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1845641604</subfield><subfield code="9">1-84564-160-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781845641603</subfield><subfield code="9">978-1-84564-160-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)175284623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ253111218</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC320</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.4022</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2500</subfield><subfield code="0">(DE-625)145618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport phenomena in fires</subfield><subfield code="c">ed. B Sundén ; M Faghri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Southampton</subfield><subfield code="b">WIT Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">477 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Developments in heat transfer</subfield><subfield code="v">20</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaleur - Transmission</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incendies - Simulation par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fires</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield><subfield code="x">Transmission</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feuer</subfield><subfield code="0">(DE-588)4016969-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feuer</subfield><subfield code="0">(DE-588)4016969-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sundén, Bengt</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Faghri, Mohammad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Developments in heat transfer</subfield><subfield code="v">20</subfield><subfield code="w">(DE-604)BV012181469</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016254639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016254639</subfield></datafield></record></collection> |
id | DE-604.BV023051261 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:07:30Z |
institution | BVB |
isbn | 1845641604 9781845641603 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016254639 |
oclc_num | 175284623 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 477 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | WIT Press |
record_format | marc |
series | Developments in heat transfer |
series2 | Developments in heat transfer |
spellingShingle | Transport phenomena in fires Developments in heat transfer Chaleur - Transmission Incendies - Simulation par ordinateur Fires Computer simulation Heat Transmission Feuer (DE-588)4016969-8 gnd Transportprozess (DE-588)4185932-7 gnd |
subject_GND | (DE-588)4016969-8 (DE-588)4185932-7 |
title | Transport phenomena in fires |
title_auth | Transport phenomena in fires |
title_exact_search | Transport phenomena in fires |
title_full | Transport phenomena in fires ed. B Sundén ; M Faghri |
title_fullStr | Transport phenomena in fires ed. B Sundén ; M Faghri |
title_full_unstemmed | Transport phenomena in fires ed. B Sundén ; M Faghri |
title_short | Transport phenomena in fires |
title_sort | transport phenomena in fires |
topic | Chaleur - Transmission Incendies - Simulation par ordinateur Fires Computer simulation Heat Transmission Feuer (DE-588)4016969-8 gnd Transportprozess (DE-588)4185932-7 gnd |
topic_facet | Chaleur - Transmission Incendies - Simulation par ordinateur Fires Computer simulation Heat Transmission Feuer Transportprozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016254639&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012181469 |
work_keys_str_mv | AT sundenbengt transportphenomenainfires AT faghrimohammad transportphenomenainfires |